
LPJ-GUESS Reference – Draft as at 2005-10-12

Ben Smith

Draft only – do not distribute outside EMBERS and do not cite

 2

LPJ-GUESS ARCHITECTURE

 3

Architecture of LPJ-GUESS

LPJ-GUESS is designed to provide a flexible platform for modelling ecosystem structural
dynamics and functioning. The version described here is a combined implementation of two
previously-developed dynamic ecosystem models – LPJ-DGVM (Sitch et al 2000, 2003;
Bachelet et al. 2003; Cramer et al. 2001, 2004; Gerten et al. 2004) and GUESS (Smith et al
2001, Hickler et al 2004). In principle, other model formalisms could be constructed with
only limited changes to the overall architecture, in terms of data structures and flow control.
 This is possible for two reasons. Firstly, the model code is organised into well-
defined modules. Each module (with the exception of modules having a primarily "technical"
function – for example, input and output of driving data and results) encompasses a relatively
well-defined, related subset of ecosystem processes with a distinct spatial and/or temporal
signature. A central framework, containing all explicit loops through space (stands, patches)
and time (days, years) in the model, binds the modules together and manages the exchange of
data between them. The modular structure is designed to reflect the ways in which different
ecosystem components and functions are actually linked in nature, making it largely
independent of the assumptions and generalisations of any particular model. The modules,
framework and links between them are described below. The main links between modules and
the framework are shown schematically in Figure 2.
 Secondly, data (driving environmental data, ecosystem state variables, static
parameters for PFTs, soils etc) are exchanged between modules via hierarchically-organised
'objects' (compound data structures, or classes) which correspond to real ecosystem
components – stands, patches, soils, individual plants etc. Whereas the specific variables
associated with each object, and parameterisations of the processes acting on them, might
vary for different models, the objects themselves, and the hierarchical links between them,
should not. The classes in which the main objects are defined are described in detail in the
section "LPJ-GUESS classes", below.

The framework

The framework (Figure 1), comprising the source code file guess.cpp and header file guess.h,
is the "mission control" of the model. It:

• contains all explicit loops through space (stands/localities/grid cells, patches) and time
(days, years) in the simulation. Timing loops are nested so that there is no "time
travel" – no process is ever fed information about a particular day or year until that
day or year is reached in the hierarchy of timing loops.

• defines the main objects (classes such as Pft, Individual, Climate, Soil etc; see section
"LPJ-GUESS Classes", below) and global variables (e.g. the number of years to
simulate, the number of replicate patches in each stand, patch size, the simulation time
step). The global utility functions dprintf, fail, plot etc, which are available throughout
the model code, are declared in the framework header file (but defined in the main
module).

• performs most calls to process functions within the modules, at the appropriate stage
in the simulation (a few such calls are delegated to the modules themselves), and
thereby manages exchange of data between the modules.

 4

initialise
input/output

initio

input stand
static properties

getstand

initialise stand and
soil static properties

stand.climate.
initdrivers

initsoildrivers

terminate
input/output

termio

daily stand climate
driver calculations

dailyaccounting_stand
daylengthinsolpet

daily patch soil driver
calculations

dailyaccounting_patch

leaf phenology
leaf_phenology

C & H2O
canopy exchange,
potential growth at

forest floor
canopy_exchange

soil water and
snow pack dynamics

soilwater

soil organic matter
dynamics

som_dynamics

next patch

next day

daily processes

daily input
stand climate

getclimate

turnover,
C allocation, growth

growth

vegetation dynamics
disturbance

vegetation_dynamics

annual output
outannual

next year

next stand

next patch

next patch

annual processes

once per stand

initialise
input/output

initio

input stand
static properties

getstand

initialise stand and
soil static properties

stand.climate.
initdrivers

initsoildrivers

terminate
input/output

termio

daily stand climate
driver calculations

dailyaccounting_stand
daylengthinsolpet

daily patch soil driver
calculations

dailyaccounting_patch

leaf phenology
leaf_phenology

C & H2O
canopy exchange,
potential growth at

forest floor
canopy_exchange

soil water and
snow pack dynamics

soilwater

soil organic matter
dynamics

som_dynamics

next patch

next day

daily processes

daily input
stand climate

getclimate

turnover,
C allocation, growth

growth

vegetation dynamics
disturbance

vegetation_dynamics

annual output
outannual

next year

next stand

next patch

next patch

annual processes

once per stand

Figure 1. Flow structure of framework.

 5

Modules

The modules, in addition to the framework, framework header file and binary libraries gutil
and plib, are the components of computer code that make up the coupled model structure. The
modules and their main functions are listed here.

Main module (main.cpp, [main.h]) Provides the interface between the model framework and
the calling process (generally the operating system's command line; alternatively, another
piece of software, such as the LPJ-GUESS windows shell); implements the global functions
dprintf, fail, plot etc. which are available throughout the code of LPJ-GUESS.

Input/output module (guessio.cpp, guessio.h) Reads simulation settings and PFT parameters
from the instruction script (ins file); reads and, if required, preprocesses climate and soil data
used to drive the model; handles most output to files, as well as the screen log and/or log file.
It is the user's responsibility to provide code for a number of required input and output
functions; see the section "Input/output", below.

Driver module (driver.cpp, driver.h) Contains various functions for "preprocessing"
environmental driver data to produce values for the driving parameters actually used by the
process modules of the coupled model (e.g. calculates potential evapotranspiration,
photosynthetically active radiation and daylength, given latitude and percentage of full
sunshine; calculates soil temperature given air temperature and soil moisture status;
interpolates monthly climate means to quasi-daily values); maintains records of climate (e.g.
mean temperature for the last month; minimum coldest-month temperature for the last 20
years); updates various climate, soil and PFT state variables. Most functions are called from
framework or input/output module.

Canopy exchange module (canexch.cpp, canexch.h) Daily calculations of canopy-atmosphere
exchange of H2O and CO2; AET (actual evapotranspiration); vegetation C-assimilation,
autotrophic respiration, NPP, FPAR (fraction of incoming photosynthetically-active radiation
used in photosynthesis), potential productivity at forest floor. NPP (photosynthesis and
autotrophic respiration) calculations may be performed monthly rather than daily to increase
simulation rate.

Soil water module (soilwater.cpp, soilwater.h) Daily update of soil moisture status and
snowpack size; runoff.

Soil organic matter dynamics module (somdynam.cpp, somdynam.h) Daily (or monthly)
calculations of heterotrophic respiration and update of litter and SOM (soil organic matter)
pool sizes.

Growth module (growth.cpp, growth.h) Daily update of leaf phenology; annual litter
production and tissue turnover; annual allocation of assimilated C to plant tissues and
reproduction; annual update of individual allometry (size, crown area etc).

Vegetation dynamics (vegdynam.cpp, vegdynam.h) Annual population dynamics
(establishment and mortality), including introduction of new PFTs, disturbance by fire,
generic patch-destroying disturbances in cohort/individual mode.

 6

Libraries

Two binary libraries are currently required to build LPJ-GUESS. The libraries provide
functions and classes of a purely technical nature which primarily serve to simplify the code
of LPJ-GUESS itself. The functionality from the libraries most likely to be accessed by users
and developers of the model code are described below in the sections "LPJ-GUESS classes"
and "Input/output". Additional information is given as commenting in the library header files,
plib.h and gutil.h.

igure 2. File structure of LPJ-GUESS. The file structure of the model reflects its modular

ess.h).
s'

ries

guess.cpp

guess.h

main.cpp

growth.cpp

soilwater.cpp

canexch.cppguessio.cpp

vegdynam.cpp
driver.cpp

somdynam.cpp

.h

.h

.h .h

.h

.h

.h

guess.cpp

main.cpp

growth.cpp

soilwater.cpp

canexch.cppguessio.cpp

vegdynam.cpp
driver.cpp

somdynam.cpp

guess.h

.h.h

.h.h

.h.h .h.h

.h.h

.h.h

.h.h

F
design. Each module has its own source code file (black) and header file (red). The
framework is also represented by a source code file (guess.cpp) and a header file (gu
The header files provide the links that give modules and the framework access to each other
functions, classes or data (an arrow in the diagram points to the module or framework file
accessed via declarations in the adjoining header file). The main module has a purely
technical function – providing an interface between the model code and the platform
(operating system etc) on which it is run. Not shown in this figure are the custom libra
gutil and plib which are required (as binary archive or library files) to build LPJ-GUESS.

 7

LPJ-GUESS CLASSES

This section deals with the classes defined in the framework header file for LPJ-GUESS
(usually called guess.h). These classes are the main medium by which data (environmental
drivers, ecosystem state variables, PFT static parameters etc) are exchanged between modules
and managed by the framework. Special operations are defined for some classes, and the use
of these is also explained. Unavoidably, some parts of this section assume familiarity with
some technical aspects of the C++ language; "C++ help" boxes are included to provide some
help with these concepts.

 8

Stand

Standpft

Standpft

Standpft

Climate

Patch

Patch

Patch

Patchpft

Patchpft

Patchpft

Vegetation

Soil

Fluxes

Individual

Individual

Individual

Pftlist

Pft

Pft

Pft

Date

Soiltype

Stand

Standpft

Standpft

Standpft

Standpft

Standpft

Standpft

Climate

Patch

Patch

Patch

Patch

Patch

Patch

Patchpft

Patchpft

Patchpft

Vegetation

Soil

Fluxes

Individual

Individual

Individual

Individual

Individual

Individual

Pftlist

Pft

Pft

Pft

Pft

Pft

Pft

Date

Soiltype

Figure 3. Class objects in LPJ-GUESS and relationships between them. Grey shading indicates membership of objects within a "parent" class
(for example, objects of classes Standpft, Climate and Patch are members of class Stand). Arrows represent reference members: the class from
which the arrow points contains a reference to the (parent) object to which it points (for example, each Climate object contains a reference
member variable to the parent Stand object).

 9

Class objects defined in LPJ-GUESS

LPJ-GUESS uses, in a limited way, object-
oriented features of the C++ language. All state
and driver variables and nearly all static
parameters are collected within classes. Classes
are compound data structures which can contain
both data (simple variables, arrays or other
classes) and functionality.

For each modelled locality, or grid cell,
there is a single object of the class Stand,
containing all dynamic and static information
specific to that locality, including the climate,
soil and vegetation. Subsidiary to the stand is
the patch, of which there may be one
(population mode) or several (cohort and
individual modes) in each stand. Patches are
represented by an object of class Patch which
contains information about the soil, snow pack if there is one, and vegetation. Objects of class
Individual contain information describing the average status of individual plants and are
therefore subsidiary to the patch. Static parameters for plant functional types (PFTs) are also
organised into a class, Pft, objects of which are stored as part of a collection class, Pftlist.

C++ Help: Classes

Classes are compound data types which may
contain both data and functionality. The data
contained within a class may be simple
variables, arrays, or objects of other class types.
Each data object is called a member variable.
Classes may also contain member functions.
Typically, but not necessarily, these perform
operations using or modifying the member
variables. Both member variables and member
functions are accessed using the class member
('.') operator. For example, the code
ben.height accesses the height member
variable of a class object called ben; the code
ben.volume() calls the object's member
function volume.

The globally-defined classes used by LPJ-GUESS and relationships between them are
illustrated in Figure 3. A detailed description of each class is given below. Even more detail is
provided by documentation in the framework header file, guess.h, where the classes are
defined.

Object of class Stand

Top-level object containing all dynamic and
static data for a particular stand (modelled
locality, or grid cell). Member data include an
object of type Climate, an object of type
Soiltype, a list of Patch objects, and a list of
Standpft objects. Class Stand inherits
functionality from the collection class template
ListArray_idin3 in the gutil library (templates
defined in gutil.h). Use syntax like the
following to loop through and retrieve member
Patch objects:

C++ Help: Collection classes

A collection class is a class (compound data
structure) that includes member functions for
managing lists, arrays or other 'collections' of
data, usually of a particular type. LPJ-GUESS
uses collection classes called 'list arrays' which
inherit their functionality from templates
defined in the Gutil library (one of the custom
libraries required to compile LPJ-GUESS). The
use of templates means that different list array
classes can accomodate different types of data.
For example, classes Stand and Vegetation are
both collection classes which inherit
functionality from the template class
ListArray_idin2, but class Stand 'contains'
objects of class Patch, whereas Vegetation
contains objects of class Individual. The list
array types defined in Gutil provide functions
for: (1) initialising or clearing the collection of
objects; (2) adding a new object to the
collection; (3) removing an object from the
collection; (4) iterating (stepping) through the
collection in sequential order; (5) accessing
objects in the collection by index, i.e. as 'array'
elements. Objects in the collection can be
queried or modified directly – there is no need
to create a new copy in memory.

// Assume stand is an object of
// class Stand

// Either:

for (p=0; p<npatch; p++) {

 // Retrieve patch as an
 // array element
 Patch& patch=stand[p];
 // NB: '&' is necessary

 10

 // if modifying patch

 // Query or modify patch here
}

// Or:

stand.firstobj();
while (stand.isobj) {

 // Retrieve patch as a
 // linked list element
 Patch& patch=stand.getobj();
 // NB: '&' is necessary
 // if modifying patch

 // Query or modify patch here

 stand.nextobj();
}

Object of class Standpft

Object containing data common to all
individuals of a particular plant functional type
(PFT) in a particular stand (modelled locality, or
grid cell). Used only in cohort and individual
modes. State variables for the average
individual of a PFT population in population
mode are part of class Individual, not Standpft.
PFT static properties ("PFT parameters") are
stored in objects of class Pft, not Standpft.
Standpft objects are stored within a dynamic
collection class object called pft which is a
member of class Stand (see above). The
Standpft corresponding to a particular PFT in a
particular stand can be accessed using the id (id
code) member of the associated Pft object, and
array-like syntax, similar to the following:

A referenc
(such as a
somewhere
be accesse
reference i
variable ho
memory),
confusing
must be in
pointers, c
to a new ob
the referen
were the 'r
The symbo
variable (o
variable of
For examp
reference v
name for a

int value
int& resu

Several LP
more refer
an object o
Vegetation
patch whic
The follow
object asso
called vege
the membe
object:

vegetatio

Functions
means that
residing so
copy of the
'list array' c
used in LP
function ge
the 'curren
maintained
code retrie
collection
Pftlist and
member va

pftlist.g

In LPJ-GU
preference
improves r
makes muc
collection

// Assume stand is an object of
// class Stand
// pft is an object of class Pft

Standpft& standpft=stand.pft[pft.id];
 // NB: '&' is necessary
 // if modifying standpft

// Query or modify standpft here

Object of class Climate

Contains all static and dynamic data relating to
the overall environmental properties, other than
soil properties, of a stand (modelled locality, or
C++ Help: References

e is an alternative name for an object
variable or class object) residing
 in memory, by which the object can

d and queried or modified. A
s similar in effect to a pointer (a
lding the address of the object in

but avoids the need for sometimes
pointer syntax. Reference variables
itialised when declared and, unlike
an not subsequently be made to refer
ject. Once declared and initialised,

ce name can be used exactly as if it
eal' name of the object it refers to.
l '&' after the type name in a
r class) declaration indicates that a
 a reference type is being declared.
le, the following code declares a
ariable called result as an alternative
 variable called value.

;
lt=value;

J-GUESS classes include one or
ence member variables referring to
f another class. For example, class
 includes a reference member called
h refers to the parent Patch object.
ing line of code retrieves the Patch
ciated with a Vegetation object
tation and assigns the value 0.5 to
r variable fpar_grass of the Patch

n.patch.fpar_grass=0.5;

may also have a reference type. This
 they return a reference to an object
mewhere in memory, rather than a
 object. For example, the various
lasses (Stand, Vegetation, Pftlist)

J-GUESS all include the member
tobj, which returns a reference to

t' object in the collection of objects
 by the class. The following line of
ves the current Pft object from a
maintained by an object of class
assigns the value 250.0 to the
riable longevity of the Pft object:

etobj().longevity=250.0;

ESS reference types are used in
 to pointers wherever possible. This
eadability of the model code and
h of the internal functioning of the

classes invisible to the 'user'.

 11

grid cell), i.e. temperature, precipitation, radiation, atmospheric CO2 concentration, derived
parameters such as heat sums (growing degree-days, GDD), as well as latitude and day length.
Soil static parameters are stored in an object of another class, Soiltype, which is also
subsidiary to Stand; soil dynamic properties may vary for different patches and form part of a
different class, Soil, subsidiary to the patch (see below). Class Climate includes a reference
member variable which refers back to the Stand object of which the Climate object is a
member. The parent Stand object can therefore be accessed using syntax such as the
following:

// Assume climate is an object of class Climate

Stand& stand=climate.stand; // NB: '&' is necessary if modifying stand

// Query or modify stand here

Object of class Soiltype

Stores soil static parameters. One object of class Soiltype is defined for each stand. Soil
dynamic properties form part of class Soil, objects of which are subsidiary to the patch (see
below).

Object of class Patch

Stores data specific to a patch. In cohort and individual modes, replicate patches are required
in each stand to accomodate stochastic variation across the site. In population mode, each
stand contains just one subsidiary patch, representing average conditions for the entire stand.
However, class Patch could be easily extended to represent within-stand heterogeneity, for
example, with respect to soil properties. Member data include objects of type Vegetation,
Soil, Fluxes and a list of Patchpft objects. Class Patch includes a reference member variable
which refers back to the Stand object of which the Patch object is a member. The parent Stand
object can therefore be accessed using syntax such as the following:

// Assume patch is an object of class Patch

Stand& stand=patch.stand; // NB: '&' is necessary if modifying stand

// Query or modify stand here

Object of class Patchpft

Object containing data common to all individuals of a particular plant functional type (PFT)
in a particular patch, including litter pools. State variables for the average individual of a PFT
population in population mode are part of class Individual, not Patchpft. PFT static properties
("PFT parameters") are stored in objects of class Pft, not Patchpft. Patchpft objects are stored
within a dynamic collection class object called pft which is a member of class Patch (see
above). The Patchpft corresponding to a particular patch can be accessed using the id (id
code) member of the associated Pft object, and array-like syntax, similar to the following:

// Assume patch is an object of class Patch
// pft is an object of class Pft

Patchpft& patchpft=patch.pft[pft.id];
 // NB: '&' is necessary if modifying patchpft

 12

// Query or modify patchpft here

Object of class Vegetation

A dynamic list of Individual objects (see below), representing the vegetation of a particular
patch. Class Vegetation inherits functionality from the collection class template
ListArray_idin2 in the gutil library (templates defined in gutil.h). Use syntax like the
following to loop through and retrieve member Individual objects:

// Assume vegetation is an object of class Vegetation

vegetation.firstobj();
while (vegetation.isobj) {

 // Retrieve Individual as a linked list element
 Individual& indiv=vegetation.getobj();
 // NB: '&' is necessary if modifying patch

 // Query or modify patch here

 vegetation.nextobj();
}

New Individual objects (corresponding to a PFT population, cohort or individual plant; see
class Individual, below) can be added to the dynamic list using the createobj member function
of class Vegetation. The Pft objects associated with the new Individual object, and also the
Vegetation object itself, must be specified as arguments to createobj, i.e.:

// Assume pft is an object of class Pft

vegetation.createobj(pft,vegetation);

An Individual object may be removed from the dynamic list using the killobj member
function. The internal object pointer must first be set to point to the Individual object to
remove. For example, the following code loops through all Individual objects in the dynamic
list, removing those for which the condition survive(climate,indiv.pft) returns false:

vegetation.firstobj();
while (vegetation.isobj) {
 Individual& indiv=vegetation.getobj();
 if (!survive(climate,indiv.pft)) vegetation.killobj();
 else vegetation.nextobj(); // advance pointer only if indiv not killed
}

Class Vegetation includes a reference member variable which refers back to the Patch object
of which the Vegetation object is a member. The parent Patch object can therefore be
accessed using syntax such as the following:

Patch& patch=vegetation.patch; // NB: '&' is necessary if modifying patch

// Query or modify patch here

 13

Object of class Soil

Stores state variables for soils and the snow pack. One object of class Soil is defined for each
patch. Class Soil could easily be extended to include other environmental properties varying
at spatial scales smaller than the stand (modelled locality, or grid cell). Class Soil includes a
reference member variable which refers back to the Patch object of which the Soil object is a
member. The parent Patch object can therefore be accessed using syntax such as the
following:

// Assume soil is an object of class Soil
Patch& patch=soil.patch; // NB: '&' is necessary if modifying patch
// Query or modify patch here

Soil also includes a reference member variable referring to the Soiltype object containing
static parameter values for this soil. Static parameters for this soil can therefore be accessed as
in the following examples:

k=((soil.soiltype.thermdiff_15-soil.soiltype.thermdiff_0)/0.15*

soilwater+soil.soiltype.thermdiff_0)*DIFFUS_CONV;

perc=soil.soiltype.perc_base*pow(wcont[i-1],soil.soiltype.perc_exp);

Object of class Fluxes

Stores daily and accumulated biogeochemical fluxes. At present only fluxes of carbon are
defined. Fluxes from ecosystems to the atmosphere are represented by positive values, fluxes
from the atmosphere to ecosystems as negative values. One object of type Fluxes is defined
for each patch. Class Fluxes includes a reference member variable which refers back to the
Patch object of which the Fluxes object is a member. The parent Patch object can therefore be
accessed using syntax such as the following:

// Assume fluxes is an object of class Fluxes

Patch& patch=fluxes.patch; // NB: '&' is necessary if modifying patch

// Query or modify patch here

Object of class Individual

Stores state variables for an average individual plant. In population mode, this is the average
individual for the entire 'population' of plants of a particular functional type (PFT) over the
modelled area. In cohort mode, it is the average individual of a cohort of plants approximately
the same age and from the same patch. In individual mode, it corresponds to an actual
individual in a particular patch (there is no averaging among similar individuals). Grass PFTs,
however, are represented by a single average individuals in each patch, regardless of mode.
Class Individual includes the reference member variable pft, which refers to the Pft object
(see below) containing static parameters for the PFT to which the individual belongs. This Pft
object can be accessed using syntax such as the following:

 14

// Assume indiv is an object of class Individual

Pft pft=indiv.pft;

// Query pft here

Class Individual also includes a reference member variable which refers back to the
Vegetation object in which the Individual object is stored. Class Vegetation, in turn, includes
a reference to the parent Patch object (see classes Vegetation and Patch, above). The Patch
object can therefore be accessed using syntax such as the following:

Patch& patch=indiv.vegetation.patch;
 // NB: '&' is necessary if modifying patch

// Query or modify patch here

See class Vegetation (above) for details of how to add and remove Individual objects from the
dynamic list in which they are stored.

Object of class Pftlist

A dynamic list of Pft objects (see below). In general, there should be just one Pftlist object,
containing static parameters for all possible plant functional types (PFTs). The static
parameters for a particular PFT are accessed by objects of class Individual, Patchpft and
Standpft via their pft reference member variable (see descriptions of these classes, above).
Class Pftlist inherits functionality from the collection class template ListArray_id in the gutil
library (templates defined in gutil.h). Use syntax like the following to loop through and
retrieve member Pft objects:

// Assume pftlist is an object of class Pftlist

pftlist.firstobj();
while (pftlist.isobj) {

 // Retrieve Pft as a linked list element
 Pft& pft=pftlist.getobj();
 // NB: '&' is necessary if modifying pft

 // Query or modify pft here

 pftlist.nextobj();
}

Pft objects in the dynamic list may also be accessed using array-like syntax. The following
code accesses the Pft object with id code (value of id member variable) 5:

Pft& pft=pftlist[5];

Object of class Pft

Stores static parameters for a plant functional type (PFT). Pft objects are stored within the
dynamic list maintained by the (one and only) object of type Pftlist (see above). There should
be just one Pft object for each PFT. Different average individuals of the same PFT (for
example, representing different annual cohorts, or occupying different patches) access PFT

 15

static parameters via their pft reference member variable, which refers ("points to") the same
Pft object in the PFT list.

Object of class Date

Class Date is a general-purpose class providing data and functionality for handling simulation
virtual time. In general, the framework module should maintain a single object of type Date
for stepping through simulation time (on a time step of one day). This object should be
accessible from all modules (declared as an 'extern' object in the framework header file). Date
contains the following member functions and variables. Note that variables should be queried
only, never modified (except indirectly by calls to member functions init or next):

void init(int nyearsim)

Called to initialise timing to day 0 of year 0. Parameter nyearsim may be set to the
number of years to simulate (then member variable islastyear will be set to true in the
last year of the simulation).

void next()
Called at end of each simulation day to update information stored in member variables.

int prevmonth()
Returns the number (0=January, ..., 11=December) of the previous simulation month.

int nextmonth()
Returns the number of the next simulation month.

int day
The current Julian day of the year (0=1 Jan; 1=2 Jan; ...; 364=31 Dec).

int dayofmonth
The current day of the current month (0-27, 0-29 or 0-30 depending on month).

int month
The number of the current month (0=January, ..., 11=December).

int year
The current simulation year (0=first year).

bool islastyear
Value is true if this is the last year of the simulation, otherwise false.

bool islastmonth
Value is true if this is the last month of the year, otherwise false.

bool islastday
Value is true if this is the last day of the month, otherwise false.

bool ismidday
Value is true if this is the middle day of the month, otherwise false.

int ndaymonth[12]
The number of days in each month (e.g. 31, 28, 31, 30, ..., 31).

 16

INPUT / OUTPUT

This section is in two parts. The first describes the input/output module of LPJ-GUESS,
through which all driver data and most static parameters are fed to the model framework.
Users of LPJ-GUESS will normally have to write part of the code of the input/output
module themselves, to suit their particular application, driver data (file formats, etc)
and output requirements. This part explains how to perform such coding. The second part
of this section deals with input/output using "streams" in the C and C++ languages. It includes
recommendations as to which functions from the standard C/C++ libraries and the custom
libraries forming part of LPJ-GUESS should be used to perform input and output-related
operations such as opening and closing files, and reading and writing data to and from files,
the keyboard and the screen. There are also brief synopses and example code explaining how
all the recommended functions may be used.

 17

Input/Output Part 1:

The input/output module of LPJ-GUESS

The default input/output module (guessio.cpp) is in two sections. The first section is
concerned with reading settings from the instruction script (.ins file), which contains run-time
model configuration settings and plant functional type (PFT) parameters. This section need, in
general, not be modified by users of the model, although it is relatively easy to add new
settings which can be read from the ins file, for example, if new PFT parameters are added to
the model.
 The second section of the input/output module contains the code for five standard
input/output functions which, by default, are called by the framework, to initialise
input/output (open files, etc), read environmental driver data for each grid cell and year,
output results for each grid cell and possibly year, and terminate input/output (close files, etc).
The second section may also contain additional functions subsidiary to these primary
input/output functions. It may also contain global data at file scope.
 In general, it is the responsibility of each user of the model to provide code for the
second section of the input/output module. The version of guessio.cpp normally distributed as
part of LPJ-GUESS is a demonstration only.

The instruction script

The instruction script (or "ins file") is a plain text file that contains (1) simulation settings,
such as the number of years to run each simulation for, whether to model certain processes
stochastically or deterministically, whether to run the model in population, cohort or
individual mode; (2) PFT static parameters; and (3) "custom" information as required by a
particular version of the input/output module, for example, the directories in which
environmental data files are found. LPJ-GUESS uses functionality from the "plib" library
(which is required to build an executable of the model) to read settings from the ins file.
Details of plib functionality are given in the library's header file, plib.h, which should be
consulted if adding new general settings for inclusion in the ins file.
 Note, however, that "custom" settings can be added to the ins file, and read in by the
input/output module, without any modifications to Section 1 of the input/output module. This
is possible by virtue of the functionality provided by class Param, which is defined locally in
guessio.cpp.

Custom "param" settings in the ins file

Custom keywords may be included in the ins file using syntax similar to the following
examples:

param "co2" (num 340)
param "file_gridlist" (str "gridlist.txt")

The first example above specifies a numerical value (340, or 340.0) for a parameter called
"co2"; the second example specifies a character string ("gridlist.txt") for a parameter called
"file_gridlist".

 18

When the ins file is read (by the call to function readins in function initio; see below), all
"param" settings, like the ones above, are stored by an instance of class Param (with a capital
"P") called param (small "p"). The object param is defined at file scope throughout
guessio.cpp, which means that the data it stores is accessible anywhere within guessio.cpp.

The values associated with the "param" strings in the above examples can be retrieved using
the following function calls (which may appear anywhere in guessio.cpp; remember that the
ins file must have been read in first):

param["co2"].num
param["file_gridlist"].str

Each "param" item can store either a number (int or double) or a string, but not both types of
data. The global function fail is called to terminate output if a "param" item with the specified
identifier was not read in.
 A list of the keywords recognised (and, in most cases, required) in the ins file for the
default input/output module of LPJ-GUESS can be obtained by running the model with the
command-line argument "-help". The keywords are also listed in an appendix to this
reference.

Standard input/output functions

The second section of the input/output module must normally contain definitions of five
specific functions, which provide the interface to the framework (normally guess.cpp), and
which the framework expects to exist in the input/output module. If any of these functions are
missing, the model will normally not compile (of course, changes to the framework may make
any of these functions redundant, or may add other required input/output functions). It is
normally the responsibility of the user of the model to provide appropriate content for the five
standard functions. The specifications for each function, including the information it is
expected to provide to the framework, are described below.

void initio(int argc, char* argv[], Pftlist& pftlist)

Initialises input/output (e.g. opening files), sets values for the global simulation parameter
variables (currently vegmode, npatch, patcharea, ifdailyps, ifdailydecomp, ifbgestab, ifsme,
ifstochestab, ifstochmort, iffire, ifdisturb, distinterval, estinterval, npft), initialises pftlist (the
one and only list of PFTs and their static parameters for this run of the model). Normally all
of the above parameters, and possibly others, are read from the ins file (see above). Function
readins should be called to input settings from the ins file. The syntax for this call should be
similar to the following (note that readins returns false in the event of any error in the ins file;
normally this should result in program termination):

xtring insfilename=argv[1];
if (!readins(insfilename,pftlist))
 fail("\nUsage: %s <instruction-script-filename> | -help",argv[0]);

Arguments argc and argv normally correspond to the command-line arguments imported
from the main function (main module, usually main.cpp). The first command line argument
(argv[0]) is the name of the binary executable (e.g. guess, guess.exe); the second (argv[1])
should normally be the ins file name.

 19

 Note that the demonstration version of initio also implements "-help" as an
alternative command-line argument, resulting in output of a brief description of the keywords
recognised in the ins file, instead of a model run.

bool getstand(Stand& stand)

Obtains latitude and soil static parameters for the next stand (grid cell or locality) to simulate.
The function should returns false if no stands remain to be simulated, otherwise true.
Currently the following member variables of stand should be initialised: members lat and
instype of member climate; the following members of member soiltype: awc[0], awc[1],
perc_base, perc_exp, thermdiff_0, thermdiff_15, thermdiff_100. The soil parameters can be
set indirectly based on an lpj soil code (Sitch et al 2000) by a call to function soilparameters
in the driver module (driver.cpp):

soilparameters(stand.soiltype,soilcode);

If the model is to be driven by quasi-daily values of the climate variables derived from
monthly means, this function may be the appropriate place to perform the required
interpolations. The utility function interp_climate in driver.cpp may be called for this
purpose:

interp_climate(mtemp,mprec,msun,dtemp,dprec,dsum);

This assumes the following arrays of type double[] are declared, presumably at file global
scope:

double mtemp[12] monthly average temperatures (°C)
double mprec[12] monthly precipitation sum (mm)
double msun[12] monthly average sunshine %
double dtemp[365] daily interpolated temperature (°C)
double dprec[365] daily interpolated rainfall (mm)
double dsun[365] daily interpolated sunshine %

bool getclimate(Stand& stand)

Called by the framework each simulation day to obtain climate data (including atmospheric
CO2 and insolation) for this day. The function should should return false if the simulation is
complete for this stand, otherwise true. This will normally require querying the year and day
member variables of the global class object date, the simulation time step:

if (date.day==0 && date.year==nyear) return false;
// else
return true;

Currently the following member variables of the climate member of stand must be initialised:
co2, temp, prec and insol. If the model is to be driven by quasi-daily values of the climate
variables derived from monthly means, this day's values will presumably be extracted from
arrays containing the interpolated daily values (see getstand, above):

stand.climate.temp=dtemp[date.day];
stand.climate.prec=dprec[date.day];
stand.climate.insol=dsun[date.day];

 20

void outannual(Stand& stand, Pftlist& pftlist)

Called by the framework at the end of the last day of each simulation year to provide the
opportunity to output simulation results. This function does not have to provide any
information to the framework.

void termio()

Called after the simulation is complete (i.e. following simulation of all stands) to allow
memory deallocation, closing of files or other "cleanup" functions.

 21

Input/Output, Part 2:

Recommended input/output techniques for use in LPJ-GUESS

The standard libraries of the C and C++ languages include several "families" of functions and
classes for performing input from and output to files (and the keyboard, screen etc). Users of
LPJ-GUESS with prior experience of C/C++ programming may have established preferences
as to coding input/output, and are in practice free to use whatever functions they wish.
However, there are arguments for adopting a standard subset of techniques:

• LPJ model development and application is a collaboration. Even "personalised"
versions of the model code are subject to viewing, copying or application by other
developers. Few LPJ developers are programmers in the first instance, and even fewer
have a background working with the C or C++ languages. "Keep it simple" is surely a
helpful principle.

• The functions adopted here, with one exception, are defined in the standard C runtime
library and so are supported by all C and C++ compilers. This guarantees portability
of any code built using these functions. The function readfor, recommended here for
input of ASCII text data, is defined in the gutil library, which is required to compile
LPJ-GUESS. The library itself is ANSI-compatible. This function does not, therefore,
restrict portability of any code it is included in.

Input/output using streams

The functions described here (with the sole exception of readfor) are defined in the header
file stdio.h and form part of the standard C runtime library, implemented by all C and C++
compilers. These functions use special memory areas called streams to store data temporarily
before it is transferred to, or after it is retrieved from, a data file on disk. The streams are
managed automatically by the library and are consequently "transparent" to the calling
program.
 Streams implemented by a calling program are identified by a "handle", which is a
variable of the type FILE* ("pointer to FILE"). Whenever a stream is created for reading or
writing (usually, by opening a file with the fopen function), the stream handle must be stored
in a variable of type FILE* and "remembered" until the stream is closed (either by termination
of the program or, preferably, by a call to function fclose). The handle is required every time
data is sent to, or retrieved from, the stream. The handle is also used when performing
operations on the "file pointer", such as "rewinding" the file.
 A few streams are implemented automatically and are, by default, always open for
reading or writing. The most useful of these are stdin, which by default retrieves input from
the keyboard, and stdout, which sends output to the screen.

 22

Required header files

Any program using the functions described here must include the header files stdio.h and
gutil.h; i.e. the following #include directives must appear at or near the top of each source
code file (note that, if both #include's are present, they should appear in the same order as
shown here):

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <gutil.h>
 // NB: the angle bracket <...> notation assumes the path to
 // gutil.h is in the standard include path
 // (see compiler documentation)

The header files gutil.h, stdlib.h, string.h and time.h are required only if function readfor is
called by the program. In this case, the program must also be linked to a binary form of the
gutil library (which has the filename gutil.lib or gutil.a). Note that all the above #include's
appear in the default framework header file for LPJ-GUESS (guess.h); therefore, they do not
also have to appear in the input/output module's source code file, so long as guess.h is
included as a header file (as it always should).

 23

Opening a file for input or output

Use the fopen function to open a file for reading or writing. The file must exist if it is to be
opened for reading only. If opening a file for writing, a new file is created, or the file is
overwritten if it already exists. This function returns a handle to the resultant input or output
stream, which should be stored in a variable of type FILE* by the calling program. If the
handle is null (has the value 0), this means that the specified file could not be opened.

Function synopsis:

FILE* fopen(const char* filename, const char* mode)

Arguments:

filename a string identifying the file to open. The full pathname should be given unless the

file is located in the "working directory" for the calling program – usually the
directory in which the executable is stored. If the filename is specified as a
character string literal, note that the backslash character ("\") must be specified
by two consecutive backslash characters (this is because the backslash character
has a special meaning in C/C++ string literals and a single backslash character is
never defined); for example, use "c:\\guess\\output.txt"; not "c:\guess\output.txt";
of course, this rule applies only to string literals within the source code of a
program.

mode the type of stream to create; various modes are possible; the most useful ones
are:

"r" or "rt" open stream for input (reading) of ASCII text (the file must exist)
"w" or "wt" open stream for output (writing) of ASCII text (a new file is

created, or the existing file is opened and its contents erased)
"a+" or "a+t" open stream for text output in append mode – any output is added

to the end of the original file contents; a new file is created if the
specified one does not exist.

"rb" open stream for input of binary data (the file must exist)
"wb" open stream for output of binary data (a new file is created, or the

existing file is opened and its contents erased)
"a+b" open stream for binary output in append mode (see "a+").

Note: arguments filename and mode are of type const char* (the standard C string type) by
default; however, arguments of type xtring (the class type used for strings in LPJ-GUESS) can
also be specified (they are casted automatically to char*).

 24

Example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <gutil.h>

FILE *in,*out;
xtring logfile="c:\\guess\\guess.log";

// Open text file "temp.bin" for input
in=fopen("temp.bin","rb");
if (!in) {
 printf("Error: could not open temp.bin for input\n");
 exit(99);
}

// Open log file with stored name for output
out=fopen(logfile,"wt");
if (!out) {
 printf("Error: could not open %s for output\n",(char*)logfile);
 exit(99);
}

 25

Input/output of binary data

Binary data can be efficiently written to a file using the fwrite function, and retrieved using
the very similar fread function. Note that binary data are transferred byte-by-byte exactly as
stored in memory. Different compilers (e.g. Sparc versus Microsoft) and, more importantly,
different languages (e.g. C/C++ versus FORTRAN) may use different ways of storing the
same information in memory. This applies particularly to numerical data types (integers and
floating-point numbers). Therefore, binary files should be avoided as a means of data transfer
between different systems and programs built using different compilers.

Function synopses:

size_t fread(void* buffer, size_t size, size_t count, FILE* stream)
size_t fwrite(const void* buffer, size_t size, size_t count, FILE* stream)

The returned value is the number of items (NB: not bytes) actually read or written; this should
normally be the same value as argument count, but may be less if an error occurred or (for
fread) the end of the file was reached before all items were input.

Arguments:

buffer A pointer to (i.e. the address in memory of) the area in memory to write to (for

fread) or transfer to file (for fwrite). The argument supplied is typically the
name of an array (equivalent to the address in memory of the first element of the
array) or the '&' operator followed by the name of a variable or class object.

size The number of bytes in memory taken up by each value to transfer. Usually the
sizeof operator is used to retrieve this value; for example sizeof(int) returns
the number of bytes occupied by a single value of type int.

count The number of consecutive objects of the specified size to transfer. This value is
usually set to 1 if transferring a simple variable or class object, or, if transferring
an array, the number of elements in the array.

stream The stream to write to or from.

Note: the type size_t (size type) is defined in the header file stdio.h; it can be treated as an
ordinary integral type (int, long etc).

 26

Example:

int i,nitem=5;
double value[]={ 12.3, 4.6, 9.2, 0.7, 3.6 };
double newvalue[5];

// Open data.bin for output
FILE* out=fopen("data.bin","wb");

// Write data to stream out
fwrite(&nitem,sizeof(int),1,out);
fwrite(value,sizeof(double),nitem,out);

// Close data.bin
fclose(out);

// Reopen data.bin for input
FILE* in=fopen("data.bin","rb");

// Read data to array newvalue
fread(&nitem,sizeof(int),1,in);
fread(newvalue,sizeof(double),nitem,in);

// Close data.bin
fclose(in);

 27

Input of ASCII text

The standard C runtime library provides function fscanf for general-purpose input of data in
text format. However, fscanf has some limitations with regard to input of "fixed format" data
as commonly used in FORTRAN programs. In addition, the specifier codes used to describe
data formats for fscanf are idiosyncratic and will take some time for programmers
accustomed to FORTRAN format strings to become used to. Therefore, for input of ASCII
text data, a function from the gutil library (gutil.lib or gutil.a) is recommended in place of the
standard C function. This function, readfor, employs format strings very similar to those used
in FORTRAN. The format string argument of readfor is of type xtring (also defined within
the gutil library), and strings input using readfor are also converted to xtring objects.
 Function readfor is available by default in the input/output module of LPJ-GUESS
(the gutil library is a required component for building LPJ-GUESS). Other programs using
readfor must be linked to gutil.lib/gutil.a, and include the header file gutil.h (see "Required
header files", above).

Function synopsis:

bool readfor(FILE*& strm, xtring format, ...)

Reads in ASCII text data from input stream strm, according to a FORTRAN-style format
specification given in the string format. Addresses of the variables to be assigned to are listed,
in order of assignment, in the ellipsis (...) argument list of the function. By default, any
characters remaining on the current line are discarded when the statement terminates (this
behaviour can be overridden by a $ specifier in the format string – see below). The function
returns true if all specified values could be read in and assigned, or false if an end-of-file
condition prevented some values from being read in and assigned.

Example:

The following code opens for reading a text file called "climate.txt", reads in two values of
type double, one integer, and 12 further values of type double, and assigns these values,
respectively, to variables lon, lat, elev, and the 12 elements of array mdata. Note that the
arguments following the format string are addresses of the variables to be assigned to – use
the '&' prefix for simple variables; omit the '&' if specifying an array name (a pointer).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <gutil.h>

FILE* in;
double lon,lat;
int elev;
double mdata[12];

in=fopen("climate.txt","rt");
if (!readfor(in,"f6.1,f5.1,i4,12f5.1",&lon,&lat,&elev,mdata))
 printf("Warning: not all values could be read in\n");

 28

Format specifiers

A subset of the format specifiers defined for input in the FORTRAN-77 language are
supported by function readfor. Note that there are some differences in the way these are
implemented compared to FORTRAN. Specifier fields in the format string are normally
separated by commas. Each instance of an F, I or A specifier is assumed to correspond to one
argument in the ellipsis argument list. Specifier syntax is case-insensitive and spaces and tabs
in the format string are ignored.

Important: a value (other than 1) for n (number of items), if specified as part of an F, I or A
specification, assumes the values read are to be assigned to consecutive elements of an array,
whose starting address is given by a single argument in the argument list. Do not use this
feature to assign multiple values with the same input format to multiple consective arguments.

Floating point specifier: nFw.dEe

Reads one or more floating point numbers, assigning each value to a variable of type double.

n the number of items to read in; if n is not specified, one value is assumed. See

cautionary note above.
w the number of characters to read in for each item; if not specified, characters are read

up to the next space, tab, end-of-line, or the next instance on the current line of a
separator character appearing immediately after the specifier in the format string (see
below).

d the number of digits in the fractional part of the number; if a decimal point is
encountered, this overrides the specified value. If d is omitted and no decimal point is
encountered, the input string is interpreted as a whole number.

e the number of digits in the exponent part of the number; if the character 'E' or 'e' is
encountered, this overrides the specified value. If e is omitted, the exponent 0 (i.e., 100
= 1) is assumed.

Examples:

Input stream: 1234 5.67

format specification strings read values assigned

F "1234" 1234.0

F3 "123" 123.0

F3.1 "123" 12.3

F4.2E1 "1234" 1.23E+04

2F4.2 "1234", " 5.6" 12.34, 5.6

 29

Integer specifier: nIw

Reads one or more integers, assigning each value to a variable of type int.

n the number of items to read in; if n is not specified, one value is assumed. See

cautionary note above.
w the number of characters to read in for each item; if not specified, characters are read

up to the next space, tab, end-of-line, or the next instance on the current line of a
separator character appearing immediately after the specifier in the format strin (see
below).

Examples:

Input stream: 123 4567

format specification strings read values assigned

I "123" 123

I2 "12" 12

2I4 "123 ", "4567" 123, 4567

Character string specifier: nAw

Reads one or more character strings, assigning each to a variable of type xtring.

n the number of items to read in; if n is not specified, one value is assumed. If reading

multiple strings, a width (w) specification must be included (otherwise the rest of the
current line is read in and assigned to the first xtring variable; subsequent variables are
assigned null strings). See cautionary note above.

w the number of characters to read for each item; if not specified, characters are read up
to the next whitespace character, comma, or the next instance of a separator character
appearing immediately after the specifier in the format string (see below).

The read to end-of-line specifier # may be used to read to the end of the current line (see
below).

Examples:

Input stream: BERT HIGGINS

format specification strings read and assigned

A "BERT"

A2 "BE"

2A6 "BERT H", "IGGINS"

A# ”BERT HIGGINS”

 30

Position specifier: nX

Advances one or more characters on the input stream.

n The number of characters to read and discard; if n is omitted, a single character is read

in and discarded.

End-of-line specifier: /

Advances to the end of the current line on the input stream. Input continues from the start of
the next line.

Suppress line feed specifier: $

If given as the last significant character in the format string, suppresses reading and discarding
of the remainder of the current line on the input stream.

Read to end-of-line specifier: #

If specified after a character string specifier, reads to the end of the current line. Use to read in
the rest of the current line as a single character string, including white space characters or
commas which are otherwise interpreted as separator characters.

Separator character specifier:

Any character other than a space, tab or comma, that cannot be interpreted as part of one of
the specifiers above, is interpreted as a separator character, and causes input up to and
including the first instance of the specified separator character on the current line. If given
immediately following a variable-width F, I or A specification, input continues, for each item,
until an instance of the specified separator character is encountered, or the end of the current
line is reached (otherwise input continues until a space, tab or the end of the line is reached).
If the separator character follows a fixed-width F, I or A specification, or forms a separate
specification field, the characters read are discarded.
 A comma is interpreted as an optional separator character; a variable-width F or I
specification followed by a comma results in input of text up to the next space, tab, end-of-
line or comma, whichever comes first; a variable-width A specification followed by a comma
results in input up to the next comma or end-of-line, whichever comes first.

Examples:

Input stream: 123; Hello World!; 3.142

format specification strings read values assigned

I;A;F "123", " Hello World!", "3.142" 123, " Hello World!", 3.142

F2.1;;I2,A "12", " 3", ".142" 1.2, 3, ".142"

 31

Input from the keyboard

If input is required from the keyboard instead of a stream attached to a file, function readfor
can be used specifying stdin (one of the default streams defined in stdio.h, and normally
associated with the terminal keyboard) as the strm argument. Due to portability
considerations, however, keyboard input should be avoided in LPJ-GUESS (run-time options
may be set via custom specifiers in the instruction script [.ins] file

 32

Output of ASCII text

Formatted output of text is achieved using the "printf" family of functions. LPJ-GUESS
supplies its own member of this family, dprintf, which sends output to the screen log (if
enabled) and log file (if enabled). In general, dprintf should be used instead of printf for
"log" type output from LPJ-GUESS, including output to the screen. This improves portability
(for example, between command-line and Windows-shell implementations of LPJ-GUESS)
and allows screen output to be disabled if, for example, the model is to be set up to run in
batch mode. LPJ-GUESS provides function fail to send text output (usually some form of
error message) to the screen log and log file, then end the simulation.

Function synopsis:

void dprintf(const char* format, ...)

Intended for writing ASCII text data to the screen or screen log window, and/or a log file (by
default, guess.log). The function may be called from anywhere within the code of LPJ-
GUESS. The function is declared in the framework header file (usually guess.h), and defined
in the "main" module (usually main.cpp). The default destination for the output text can be
changed by simple modification of the function definition in main.cpp. In other respects, the
function behaves exactly like function fprintf, which is described below.

Function synopsis:

void fail(const char* format, ...)

Writes ASCII text data to the screen or screen log window, and/or a log file (by default,
guess.log), then terminates execution of the model. Intended to allow a final error message or
similar to be output before aborting the model simulation, for example in the event of an
abnormal condition suggesting that an error has occurred. The function may be called from
anywhere within the code of LPJ-GUESS. The function is declared in the framework header
file (usually guess.h), and defined in the "main" module (usually main.cpp). The function is
identical to dprintf in its handling of output.

For output to files, use the fprintf function. A simplified description of function fprintf
follows; a complete synopsis of the function is beyond the scope of this guide (see any C
language reference for a more detailed description of this function).

Function synopsis:

int fprintf(FILE* stream,const char* format, ...)

Writes ASCII text data to output stream stream, according to the format specifications and
other text given in the string format. Arguments to be output are listed in the ellipsis (...)
argument list of the function. A format specification is required for each argument in the
ellipsis argument list. The arguments must appear in the same order as the format
specifications in format. The returned value is the number of characters output.

 33

The format string

The format string may consist of any combination of ordinary text and format specifications.
Ordinary text is output exactly as it appears in the format string, while each format
specification is converted to a representation of the data value contained in (or pointed to) by
its corresponding argument in the ellipsis argument list. Format specifications may be freely
interspersed with ordinary text.

Format specifications

Each format specification has the form: %fwpt

where f, w, p and t are different fields of the specification, known as the flags field, width
field, precision field and type field, respectively. All of the fields are optional (may be
omitted), except the type field.

The flags field, f

The flags field, if given, may consist of any combination of the following single character
specifiers:

- left align the output text within field specified by w (default: right align)
+ if the value to output is of a signed numerical type, prefix the output text by a sign (+

or -) (default: no sign output)
0 if the value to output is of a floating point type, pad the output value on the left by

zeroes, up to the width specified by w (default: padding by spaces)

The width field, w

If given, this field must consist of a positive integer, representing the minimum number of
characters to output. If the output value requires more than the number of characters specified
by w (depending on the precision field, the flags field and the value of the argument to be
output) the width specification is ignored. If the number of characters to output is less than w,
the output is padded on the left be spaces, by default. This default behaviour can be modified
by a 0 or – specifier in the flags field (see above).

The precision field, p

This field always consists of a decimal point (.) followed by a positive integer, representing
either the number of digits to show after the decimal point for floating point numbers output
using the e, E or f type specifier (see below); or the maximum number of significant digits to
print for floating point numbers output using the g or G type specifier (see below). Default
precision is assumed if the precision field is omitted. Precision specifications can also be
made for output of integer and string types, but this functionality is not explained here.

The type field, t

The type field specifies the data type of the corresponding argument in the ellipsis argument
list, and for some types, also controls the appearance of the output text. A subset of the

 34

possible type specifiers are given below. Note that type specifiers are case sensitive (e.g. 'g' is
interpreted differently to 'G').

c single character; supplied argument may be of type int, long or char
d, i signed integer; supplied argument may be of type int, long or char; unsigned integral

types are converted to signed
f signed floating point value, output in simple decimal format (e.g. -3.142); supplied

argument may be of type float or double; integral types (int, long etc) must be
explicitly cast to float or double

e, E signed floating point value, output in exponent format (e.g. -1.23E+45); the symbol 'E'
in the output value may be in upper or lower case, depending on the case of the
specifier; supplied argument may be of type float or double; integral types must be
explicitly cast to float or double

g, G signed floating point value, output in either simple decimal or exponent format,
depending on the value of the supplied argument; the symbol 'E', if included in the
output value, may be in upper or lower case, depending on the case of the specifier;
supplied argument may be of type float or double; integral types must be explicitly
cast to float or double.

s character string; supplied argument must be a char* pointer to the string to output;
Important: strings of type xtring (or other non-pointer representations) must be
explicitly cast to char* (see example below)

Example:

The following code:

xtring name="Bert Higgins";
int age=24;
double height=1.8;

FILE* out=fopen("logfile.txt","w");

fprintf(out, "Name: %s\nAge:%4d\nHeight:%5.2f\n",
 (char*)name, age, height);

results in output of the following text to the file logfile.txt:

Name: Bert Higgins
Age: 24
Height: 1.80

 35

Closing files

Streams are closed using the fclose function. You should make it a habit to close all files
explicitly, even though streams are normally closed automatically when a program terminates.

Function synopsis:

int fclose(FILE* stream)

The function returns null (0) except in the event of an error (e.g. if the specified FILE* is not
a valid handle to an open stream).

Other useful input/output functions

Function synopsis:

int feof(FILE* stream)

This function returns null (0) unless the file pointer on the specified stream has passed the last
data byte in the file, i.e. end-of-file has been reached. Function feof is often useful when
reading a file from start to finish, as in the following example.

Example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <gutil.h>

double lon,lat,temp[12];

FILE* in=fopen("temp.txt","r");
FILE* out=fopen("temp.bin","wb");

while (!feof(in)) {
 if (benutil::readfor(in,"f7.3,f6.2,12f6.1",&lon,&lat,temp)) {
 fwrite(&lon,sizeof(int),1,out);
 fwrite(&lat,sizeof(int),1,out);
 fwrite(temp,sizeof(double),12,out);
 }
}

fclose(in);
fclose(out);

 36

Function synopsis:

void rewind(FILE* stream)

Repositions the file pointer on the specified stream to the start of the file.

Example:

bool findcell(double lon,double lat,FILE* in,double temp[12]) {

 // Finds the record corresponding to grid cell (lon,lat) on the
 // specified stream and reads temperature data for this grid cell to
 // array temp.
 // Returns false if the record could not be found

 double rlon,rlat;
 bool rewound=false;

 while (!feof(in)) {
 if (benutil::readfor(in,"f7.3,f6.2,12f6.1",&rlon,&rlat,temp)) {
 if (rlon==lon && rlat==lat) return true;
 }
 else if (!rewound) { // rewind if end-of-file reached
 rewind(in);
 rewound=true;
 }
 }
 return false;
}

 37

Graphical output

More recent versions of LPJ-GUESS define a number of global functions for graphical
output. These are functional only if LPJ-GUESS is built as a dynamic-link library (DLL)
under Windows and run from the LPJ-GUESS windows shell. In other implementations the
graphical functions may still be called but will not cause anything to happen.

Function synopsis:

void plot(xtring window, xtring series, double x, double y)

Opens a new graphics window called window if it is not already open; creates a new series
(curve) called series if it does not already exist; adds a data point with the coordinate (x, y).
Typically x will correspond to the simulation year (date.year) and y to the value of some
state variable.

Example:

The following code, called every 10th simulation year, causes display of a chart with a curve
corresponding to each of the soil organic matter pools in a certain patch:

if (!(date.year%10)) {
 plot("SoilC","Fast",date.year,patch.soil.cpool_fast);
 plot("SoilC","Slow",date.year,patch.soil.cpool_slow);
}

Function synopsis:

void resetwindow(xtring window)

Clears all series and data from window window but does not close the window.

Function synopsis:

void clear_all_graphs()

Clears all series and data from all open graphics windows, and closes the windows.

 38

Custom library reference:

Character string manipulation with class xtring

Most character strings in LPJ-GUESS are stored as objects of class xtring. The definition of
class xtring and its member functions is included in the gutil library (gutil.lib; Unix version:
gutil.a) which is a required to build LPJ-GUESS.

Construction and initialisation

The following forms of constructor function are supplied for constructing and initialising new
xtring objects:

xtring()
xtring(char* str)
xtring(char ch)
xtring(int initsize)

If a char* or char argument is supplied, it provides the initial string text; otherwise an empty
string ("") is assigned. If the integer argument initsize is given, the empty string is assigned to
the object, but at least initsize+1 bytes of memory are set aside for the object's string buffer
(this implies that a string up to initsize characters in length can subsequently be assigned to
the object without reallocation of memory for the string buffer).

Declare new xstring objects using one of the following forms:

xtring s; // equivalent to xtring s=""
xtring s="initial text";
xtring s='c';
xtring s(INITSIZE);

You can also cast a string or character literal to an xtring the usual way:

(xtring)"Cast to a xtring"
(xtring)'c'

In general, xtring objects can be used in place of standard C char* strings without explicit
casting, e.g.

char copy[100];
xtring original="text";
strcpy(copy,original);

However, xtring objects must be explicitly casted to char* when specified as arguments in
calls to functions with an ellipsis argument, e.g.

xtring name="Ben";
printf("My name is: %s",(char*)name);

Casting to char* is useful also if you (unwisely?) choose to write directly to the internal string
buffer of the xtring object:

 39

xtring name(100);
char* pbuffer=(char*)name;
strcpy(pbuffer,"Ben");

Note, however, that some of the member functions of xtring can cause the size and memory
position of the internal buffer to change. You must ensure that the buffer is at least size+1
bytes (characters) in length if writing a string size bytes in length to it. The specified
minimum size of the buffer is guaranteed if the xtring object is initialised using the xtring(int)
constructor (see above) or following a call to member function reserve (see below).

Other public member functions

unsigned long len()

Returns the length of the current string in characters (not including a trailing null character);
e.g.

xtring s="18 characters long";
int result=s.len();

xtring upper()

Returns a new xtring equivalent to the current one, but with lower-case alphabetics 'a'-'z'
converted to upper case; e.g.

xtring s="the quick brown fox";
xtring t=s.upper(); // t set to "THE QUICK BROWN FOX"

xtring lower()

Returns a new xtring equivalent to the current one, but with upper-case alphabetics 'A'-'Z'
converted to lower case; e.g.

xtring s="THE QUICK BROWN FOX";
xtring t=s.lower(); // t set to "the quick brown fox"

xtring printable()

Returns a new xtring equivalent to the current one, but with non-printable characters (ASCII
code 0-31) removed.

xtring left(unsigned long n)

Returns a new xtring consisting of the leftmost n characters of the current xtring. An empty
string ("") is returned if n ≤ 0; if n > length of the current xtring, an identical copy of the
current xtring is returned; e.g.

xtring s="Ben Smith";
xtring t=s.left(3); // t set to "Ben"

xtring mid(unsigned long s, unsigned long n)
xtring mid(unsigned long s)

 40

If both arguments are given, returns a new xtring consisting of up to n characters, starting at
character number s (zero-based) of the current xtring. If s < 0, the new string starts at
character 0 of the current xtring; if s ≥ length of the current xtring, an empty string is returned.
If argument n is omitted, returns a new xtring consisting of the rightmost portion of the
current xtring, starting at character number s. If s < 0 an identical copy of the current xtring is
returned; e.g.

xtring s="Wolfgang Amadeus Mozart";
xtring t=s.mid(9); // t set to "Amadeus Mozart"
xtring q=s.mid(9,7); // q set to "Amadeus"

xtring right(unsigned long n)

Returns a new xtring consisting of the rightmost n characters of the current xtring. An empty
string is returned if n ≤ 0; if n > length of the current xtring, an identical copy is returned; e.g.

xtring s="Ben Smith";
xtring t=s.right(5); // t set to "Smith"

long find(char* s)
long find(char c)

Returns the position (zero based) of the specified character string or character if it occurs as a
substring of the current xtring. If a char* argument longer than one character is given, the
returned value is the position of the first character of the substring, if it is found. If there are
several occurences, the position of the leftmost occurence is returned. Returns -1 if the string
or character is not found; e.g.

xtring s="abbcd";
int n=s.find('b'); // n set to 1
int m=s.find("bc"); // m set to 2
int q=s.find("de"); // q set to -1

long findoneof(char* s)

Returns the position in this xtring of the first (leftmost) occurrence any character forming part
of the string pointed to by s. Returns -1 if there are no occurrences; e.g.

xtring s="abbcd";
int n=s.findoneof("edc"); // n set to 3

long findnotoneof(char* s)

Returns the position in this xtring of the first (leftmost) character not forming part of the
string pointed to by s. Returns -1 if no such character is found; e.g.

xtring s="abbcd";
int n=s.findnotoneof("abc"); // n set to 4

 41

double num()

Returns the numerical value of the current xtring, if it is a valid representation of a double
precision floating point number in C++. Call function isnum() to test whether the returned
value is meaningful; e.g.

xtring pi="3.142";
double v=pi.num(); // v set to 3.142

char isnum()

Returns 1 if the current xtring is a valid representation of a double precision floating point
number in C++, 0 otherwise; e.g.

xtring good="3.142";
xtring bad="three point one four two";
double val;
if (good.isnum()) val=good.num();
else val=bad.num();

void printf(char* fmt,...)

A printf-style function for writing formatted data to this xtring object. Equivalent to function
sprintf in the standard C stream input/output library (stdio.h). See any standard C/C++
reference manual for full documentation of printf-style output functions; e.g.

xtring out;
char* name[]="pi";
double dval=3.142;
int ndec=3;
out.printf("%s has the value %g to %d decimal places",name,dval,ndec);
 // out set to "pi has the value 3.142 to 3 decimal places"

void reserve(unsigned long n)

Expands or contracts the memory allocation to the current xtring object to accomodate a
string at least n characters in length (not including the trailing null byte). The currently stored
string may be copied to a new location in memory but is not deleted. This function may be
useful if you intend to write directly to the internal string buffer, whose address is returned by
casting the xtring object to char*; e.g.

xtring s;
s.reserve(100);
strcpy(s,"A string up to 100 characters long");

In general, however, there should be no reason to write directly to the internal string buffer of
an xtring object; use the assignment (=) operator (see below) to assign a new value to the
object.

 42

Overloaded operators

The following operators are defined for xtring objects:

Assignment: =, +=
Concatenation: +, +=
Comparison: ==, !=, <, >, <=, >=
Array subscript: []

Operator functionality is described here mainly by code examples. The examples below
assume the following data types for variables:

xtring x1,x2,x3;
char* s;
char c;
unsigned long n;

Assignment:

x1="Ben";
x1+=" Smith"; // x1 set to "Ben Smith"

Concatenation (appends a char* string, xtring or character to the end of an xtring string):

x1="Wolfgang ";
x2=" Mozart";
c='A';
x3=x1+c;
x3+=x2+" (composer)";
 // x3 set to "Wolfgang A Mozart (composer)"

Concatenation of, for example, two char* strings, or a xtring to the end of a char* string, is
possible by casting one of the operands to an xtring:

x1=(xtring)"Wolfgang "+"Mozart";
x1=(xtring)"Wolfgang"+x2;

Comparison (== and != compare string identity; <, >, <=, >= compare "alphabetic" rank):

x1==x2 && x2!=x3 || x1<s || x1>c || x2<=x3 || x3>=x1

Note that the left hand operand must be a xtring (or casted to xtring)

Array subscript (x[n] retrieves a reference to the nth character [zero-based] within xtring x):

c=x1[n];
x1[n]=c;

The size of the internal string buffer is expanded if necessary to ensure that the specified
subscript is valid (points to a character position within the internal string buffer). However,
the string itself is not expanded (i.e. the position of the trailing null byte, signifying the end of
the string, is not changed.

 43

References

Bachelet, D, Neilson, R.P., Hickler, T., Drapek, R.J., Lenihan, J.M., Sykes, M.T., Smith, B., Sitch, S. &

Thonicke, K. 2003. Simulating past and future dynamics of natural ecosystems in the United States.
Global Biogeochemical Cycles 17: 1045-1065.

Badeck, F.-W., Lischke, H., Bugmann, H., Hickler, T., Hönninger, K., Lasch, P., Lexer, M.J., Mouillot, F.,
Schaber, J. & Smith, B. 2001. Tree species composition in European pristine forests. Comparison of
stand data to model predictions. Climatic Change 51: 307-347.

Cramer, W., Bondeau, A., Woodward, F.I., Prentice, I.C., Betts, R.A., Brovkin, V., Cox, P.M., Fisher, V., Foley,
J.A., Friend, A.D., Kucharik, C., Lomas, M.R., Ramankutty, N., Sitch, S., Smith, B., White, A. &
Young-Molling, C. (2001) Global response of terrestrial ecosystem structure and function to CO2 and
climate change: results from six dynamic global vegetation models. Global Change Biology 7: 357-373.

Cramer, W., Bondeau, A., Schaphoff, S., Lucht, W., Smith, B. & Sitch, S. 2004. Tropical forests and the global
carbon cycle: Impacts of atmospheric CO2, climate change and rate of deforestation. Philosophical
Transactions of the Royal Society of London, Series B. 359: 331-343.

Foley, J.A. 1995. An equilibrium model of the terrestrial carbon budget. Tellus 47B: 310-319.
Fulton, M.R. 1991. Adult recruitment rate as a function of juvenile growth in size-structured plant populations.

Oikos 61: 102-105.
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. 2004. Terrestrial vegetation and water balance –

hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology 286: 249-270.
Haxeltine A. & Prentice I.C. 1996. BIOME3: an equilibrium terrestrial biosphere model based on

ecophysiological constraints, resource availability, and competition among plant functional types.
Global Biogeochemical Cycles 10: 693-709.

Hickler, T., Smith, B., Sykes, M.T., Davis, M.B., Sugita, S. & Walker, K. 2004. Using a generalized vegetation
model to simulate vegetation dynamics in the western Great Lakes region, USA, under alternative
disturbance regimes. Ecology 85: 519-530.

Lloyd, J. & Taylor J.A. 1994. On the temperature dependence of soil respiration. Functional Ecology 8: 315-323.
Lucht, W., Prentice, I.C., Myneni, R.B., Sitch, S., Friedlingstein, P., Cramer, W., Bousquet, P., Buermann, W. &

Smith, B. 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect.
Science 296: 1687-1689.

Prentice, I.C., Sykes, M.T. & Cramer W. 1993. A simulation model for the transient effects of climate change on
forest landscapes. Ecological Modelling 65: 51-70.

Reich, P.B., Walters M.B. & Ellsworth D.S. 1997. From tropics to tundra: global convergence in plant
functioning. Proceedings of the National Academy of Sciences USA 94: 13730-13734.

Sitch, S., Prentice I.C., Smith, B. & Other LPJ Consortium Members, 2000. LPJ – a coupled model of vegetation
dynamics and the terrestrial carbon cycle. In: Sitch, S. The Role of Vegetation Dynamics in the Control
of Atmospheric CO2 Content, Ph.D. Thesis, Lund University, Lund, Sweden.

Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J., Levis, S., Lucht, W., Sykes,
M., Thonicke, K. & Venevsky, S. 2003. Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. Global Change Biology 9:
161-185.

Smith, B., Prentice, I.C. & Sykes, M. 2001. Representation of vegetation dynamics in the modelling of terrestrial
ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and
Biogeography 10: 621-637.

Sykes, M.T., Prentice I.C. & Cramer W. 1996. A bioclimatic model for the potential distributions of north
European tree species under present and future climates. Journal of Biogeography 23: 209-233.

Sykes, M.T., Prentice, I.C., Smith, B., Cramer, W. & Venevsky, S. 2001. An Introduction to the European
Terrestrial Ecosystem Modelling Activity. Global Ecology and Biogeography 10: 581-594.

Thonicke, K., Venevsky, S., Sitch, S. & Cramer, W. 2001. The role of fire disturbance for global vegetation
dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography
10: 661-677.

Websites

www.pik-potsdam.de/lpj
www.nateko.lu.se/embers

