
 1

GUTIL Library Reference
Ben Smith

Introduction

GUTIL is a collection of C++ functions and classes providing technical (i.e. non-scientific)
functionality to Lund University’s LPJ-GUESS ecosystem modelling framework. It includes
templates for a series of dynamic collection classes that function both as linked lists and
arrays; a stream input function emulating the FORTRAN read statement; and a class for
storing and manipulating character strings. GUTIL can be compiled as a static library or
object file and linked in to any C++ program. Compilation should be possible on any
platform; it has been tested under Windows, Linux (g++, pgCC, icc) and Unix (Sparc C++).
This document provides a synopsis of the functions and classes most likely to be of interest to
general users. Additional (and definitive) documentation is provided in the header file
gutil.h.

Compilation

Linux/Unix: A make file (GNU g++ compiler) is included with the release. This builds gutil
as a simple object file (gutil.o) which may be linked in to any C++ program; e.g.

$ g++ xampl.cpp gutil.o

Windows: Build gutil as a static library (gutil.lib). Include the library in the build for any
C++ application. Alternatively, include gutil.cpp in the build for any C++ application.

All platforms: All of the following #includes must appear at the start of any source code file
invoking functionality from gutil. This includes, of course, the main program. Note that
gutil.h must appear last in the list; the full pathname may be required:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include “gutil.h”

Stream text input with function readfor

bool readfor(FILE*& strm, xtring format, ...)

Reads in ASCII text data from input stream strm, according to a FORTRAN-style format
specification given in the string format. Addresses of the variables to be assigned to are listed,
in order of assignment, in the ellipsis (...) argument list of the function. By default, any
characters remaining on the current line are discarded when the statement terminates (this
behaviour can be overridden by a $ specifier in the format string – see below). The function
returns true if all specified values could be read in and assigned, or false if an end-of-file

 2

condition prevented some values from being read in and assigned.

Example:

The following code opens for reading a text file called "climate.txt", reads in two values of
type double, one integer, and 12 further values of type double, and assigns these values,
respectively, to variables lon, lat, elev, and the 12 elements of array mdata. Note that the
arguments following the format string are addresses of the variables to be assigned to – use
the '&' prefix for simple variables; omit the '&' if specifying an array name (a pointer).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <gutil.h>

FILE* in;
double lon,lat;
int elev;
double mdata[12];

in=fopen("climate.txt","rt");
if (!readfor(in,"f6.1,f5.1,i4,12f5.1",&lon,&lat,&elev,mdata))
 printf("Warning: not all values could be read in\n");

Format specifiers

A subset of the format specifiers defined for input in the FORTRAN-77 language are
supported by function readfor. Note that there are some differences in the way these are
implemented compared to FORTRAN. Specifier fields in the format string are normally
separated by commas. Each instance of an F, I or A specifier is assumed to correspond to one
argument in the ellipsis argument list. Specifier syntax is case-insensitive and spaces and tabs
in the format string are ignored.

Important: a value (other than 1) for n (number of items), if specified as part of an F, I or A
specification, assumes the values read are to be assigned to consecutive elements of an array,
whose starting address is given by a single argument in the argument list. Do not use this
feature to assign multiple values with the same input format to multiple consective arguments.

Floating point specifier: nFw.dEe

Reads one or more floating point numbers, assigning each value to a variable of type double.

n the number of items to read in; if n is not specified, one value is assumed. See

cautionary note above.
w the number of characters to read in for each item; if not specified, characters are read

up to the next space, tab, end-of-line, or the next instance on the current line of a
separator character appearing immediately after the specifier in the format string (see
below).

d the number of digits in the fractional part of the number; if a decimal point is
encountered, this overrides the specified value. If d is omitted and no decimal point is
encountered, the input string is interpreted as a whole number.

e the number of digits in the exponent part of the number; if the character 'E' or 'e' is

 3

encountered, this overrides the specified value. If e is omitted, the exponent 0 (i.e., 100
= 1) is assumed.

Examples:

Input stream: 1234 5.67

format specification strings read values assigned

F "1234" 1234.0

F3 "123" 123.0

F3.1 "123" 12.3

F4.2E1 "1234" 1.23E+04

2F4.2 "1234", " 5.6" 12.34, 5.6

Integer specifier: nIw

Reads one or more integers, assigning each value to a variable of type int.

n the number of items to read in; if n is not specified, one value is assumed. See

cautionary note above.
w the number of characters to read in for each item; if not specified, characters are read

up to the next space, tab, end-of-line, or the next instance on the current line of a
separator character appearing immediately after the specifier in the format strin (see
below).

Examples:

Input stream: 123 4567

format specification strings read values assigned

I "123" 123

I2 "12" 12

2I4 "123 ", "4567" 123, 4567

Character string specifier: nAw

Reads one or more character strings, assigning each to a variable of type xtring.

n the number of items to read in; if n is not specified, one value is assumed. If reading

multiple strings, a width (w) specification must be included (otherwise the rest of the
current line is read in and assigned to the first xtring variable; subsequent variables are
assigned null strings). See cautionary note above.

w the number of characters to read for each item; if not specified, characters are read up
to the next whitespace character, comma, or the next instance of a separator character
appearing immediately after the specifier in the format string (see below).

 4

The read to end-of-line specifier # may be used to read to the end of the current line (see
below).

Examples:

Input stream: BERT HIGGINS

format specification strings read and assigned

A "BERT"

A2 "BE"

2A6 "BERT H", "IGGINS"

A# ”BERT HIGGINS”

Position specifier: nX

Advances one or more characters on the input stream.

n The number of characters to read and discard; if n is omitted, a single character is read

in and discarded.

End-of-line specifier: /

Advances to the end of the current line on the input stream. Input continues from the start of
the next line.

Suppress line feed specifier: $

If given as the last significant character in the format string, suppresses reading and discarding
of the remainder of the current line on the input stream.

Read to end-of-line specifier: #

If specified after a character string specifier, reads to the end of the current line. Use to read in
the rest of the current line as a single character string, including white space characters or
commas which are otherwise interpreted as separator characters.

Separator character specifier:

Any character other than a space, tab or comma, that cannot be interpreted as part of one of
the specifiers above, is interpreted as a separator character, and causes input up to and
including the first instance of the specified separator character on the current line. If given
immediately following a variable-width F, I or A specification, input continues, for each item,
until an instance of the specified separator character is encountered, or the end of the current
line is reached (otherwise input continues until a space, tab or the end of the line is reached).
If the separator character follows a fixed-width F, I or A specification, or forms a separate
specification field, the characters read are discarded.
 A comma is interpreted as an optional separator character; a variable-width F or I
specification followed by a comma results in input of text up to the next space, tab, end-of-

 5

line or comma, whichever comes first; a variable-width A specification followed by a comma
results in input up to the next comma or end-of-line, whichever comes first.

Examples:

Input stream: 123; Hello World!; 3.142

format specification strings read values assigned

I;A;F "123", " Hello World!", "3.142" 123, " Hello World!", 3.142

F2.1;;I2,A "12", " 3", ".142" 1.2, 3, ".142"

Input from the keyboard

If input is required from the keyboard instead of a stream attached to a file, function readfor
can be used specifying stdin (one of the default streams defined in stdio.h, and normally
associated with the terminal keyboard) as the strm argument.

Character string manipulation with class xtring

Construction and initialisation

The following forms of constructor function are supplied for constructing and initialising new
xtring objects:

xtring()
xtring(char* str)
xtring(char ch)
xtring(int initsize)

If a char* or char argument is supplied, it provides the initial string text; otherwise an empty
string ("") is assigned. If the integer argument initsize is given, the empty string is assigned to
the object, but at least initsize+1 bytes of memory are set aside for the object's string buffer
(this implies that a string up to initsize characters in length can subsequently be assigned to
the object without reallocation of memory for the string buffer).

Declare new xstring objects using one of the following forms:

xtring s; // equivalent to xtring s=""
xtring s="initial text";
xtring s='c';
xtring s(INITSIZE);

You can also cast a string or character literal to an xtring the usual way:

(xtring)"Cast to a xtring"
(xtring)'c'

In general, xtring objects can be used in place of standard C char* strings without explicit
casting, e.g.

 6

char copy[100];
xtring original="text";
strcpy(copy,original);

However, xtring objects must be explicitly casted to char* when specified as arguments in
calls to functions with an ellipsis argument, e.g.

xtring name="Ben";
printf("My name is: %s",(char*)name);

Casting to char* is useful also if you (unwisely?) choose to write directly to the internal string
buffer of the xtring object:

xtring name(100);
char* pbuffer=(char*)name;
strcpy(pbuffer,"Ben");

Note, however, that some of the member functions of xtring can cause the size and memory
position of the internal buffer to change. You must ensure that the buffer is at least size+1
bytes (characters) in length if writing a string size bytes in length to it. The specified
minimum size of the buffer is guaranteed if the xtring object is initialised using the xtring(int)
constructor (see above) or following a call to member function reserve (see below).

Other public member functions

unsigned long len()

Returns the length of the current string in characters (not including a trailing null character);
e.g.

xtring s="18 characters long";
int result=s.len();

xtring upper()

Returns a new xtring equivalent to the current one, but with lower-case alphabetics 'a'-'z'
converted to upper case; e.g.

xtring s="the quick brown fox";
xtring t=s.upper(); // t set to "THE QUICK BROWN FOX"

xtring lower()

Returns a new xtring equivalent to the current one, but with upper-case alphabetics 'A'-'Z'
converted to lower case; e.g.

xtring s="THE QUICK BROWN FOX";
xtring t=s.lower(); // t set to "the quick brown fox"

xtring printable()

 7

Returns a new xtring equivalent to the current one, but with non-printable characters (ASCII
code 0-31) removed.

xtring left(unsigned long n)

Returns a new xtring consisting of the leftmost n characters of the current xtring. An empty
string ("") is returned if n ≤ 0; if n > length of the current xtring, an identical copy of the
current xtring is returned; e.g.

xtring s="Ben Smith";
xtring t=s.left(3); // t set to "Ben"

xtring mid(unsigned long s, unsigned long n)
xtring mid(unsigned long s)

If both arguments are given, returns a new xtring consisting of up to n characters, starting at
character number s (zero-based) of the current xtring. If s < 0, the new string starts at
character 0 of the current xtring; if s ≥ length of the current xtring, an empty string is returned.
If argument n is omitted, returns a new xtring consisting of the rightmost portion of the
current xtring, starting at character number s. If s < 0 an identical copy of the current xtring is
returned; e.g.

xtring s="Wolfgang Amadeus Mozart";
xtring t=s.mid(9); // t set to "Amadeus Mozart"
xtring q=s.mid(9,7); // q set to "Amadeus"

xtring right(unsigned long n)

Returns a new xtring consisting of the rightmost n characters of the current xtring. An empty
string is returned if n ≤ 0; if n > length of the current xtring, an identical copy is returned; e.g.

xtring s="Ben Smith";
xtring t=s.right(5); // t set to "Smith"

long find(char* s)
long find(char c)

Returns the position (zero based) of the specified character string or character if it occurs as a
substring of the current xtring. If a char* argument longer than one character is given, the
returned value is the position of the first character of the substring, if it is found. If there are
several occurences, the position of the leftmost occurence is returned. Returns -1 if the string
or character is not found; e.g.

xtring s="abbcd";
int n=s.find('b'); // n set to 1
int m=s.find("bc"); // m set to 2
int q=s.find("de"); // q set to -1

long findoneof(char* s)

Returns the position in this xtring of the first (leftmost) occurrence any character forming part
of the string pointed to by s. Returns -1 if there are no occurrences; e.g.

 8

xtring s="abbcd";
int n=s.findoneof("edc"); // n set to 3

long findnotoneof(char* s)

Returns the position in this xtring of the first (leftmost) character not forming part of the
string pointed to by s. Returns -1 if no such character is found; e.g.

xtring s="abbcd";
int n=s.findnotoneof("abc"); // n set to 4

double num()

Returns the numerical value of the current xtring, if it is a valid representation of a double
precision floating point number in C++. Call function isnum() to test whether the returned
value is meaningful; e.g.

xtring pi="3.142";
double v=pi.num(); // v set to 3.142

char isnum()

Returns 1 if the current xtring is a valid representation of a double precision floating point
number in C++, 0 otherwise; e.g.

xtring good="3.142";
xtring bad="three point one four two";
double val;
if (good.isnum()) val=good.num();
else val=bad.num();

void printf(char* fmt,...)

A printf-style function for writing formatted data to this xtring object. Equivalent to function
sprintf in the standard C stream input/output library (stdio.h). See any standard C/C++
reference manual for full documentation of printf-style output functions; e.g.

xtring out;
char* name[]="pi";
double dval=3.142;
int ndec=3;
out.printf("%s has the value %g to %d decimal places",name,dval,ndec);
 // out set to "pi has the value 3.142 to 3 decimal places"

void reserve(unsigned long n)

Expands or contracts the memory allocation to the current xtring object to accomodate a
string at least n characters in length (not including the trailing null byte). The currently stored
string may be copied to a new location in memory but is not deleted. This function may be
useful if you intend to write directly to the internal string buffer, whose address is returned by
casting the xtring object to char*; e.g.

 9

xtring s;
s.reserve(100);
strcpy(s,"A string up to 100 characters long");

In general, however, there should be no reason to write directly to the internal string buffer of
an xtring object; use the assignment (=) operator (see below) to assign a new value to the
object.

Overloaded operators

The following operators are defined for xtring objects:

Assignment: =, +=
Concatenation: +, +=
Comparison: ==, !=, <, >, <=, >=
Array subscript: []

Operator functionality is described here mainly by code examples. The examples below
assume the following data types for variables:

xtring x1,x2,x3;
char* s;
char c;
unsigned long n;

Assignment:

x1="Ben";
x1+=" Smith"; // x1 set to "Ben Smith"

Concatenation (appends a char* string, xtring or character to the end of an xtring string):

x1="Wolfgang ";
x2=" Mozart";
c='A';
x3=x1+c;
x3+=x2+" (composer)";
 // x3 set to "Wolfgang A Mozart (composer)"

Concatenation of, for example, two char* strings, or a xtring to the end of a char* string, is
possible by casting one of the operands to an xtring:

x1=(xtring)"Wolfgang "+"Mozart";
x1=(xtring)"Wolfgang"+x2;

Comparison (== and != compare string identity; <, >, <=, >= compare "alphabetic" rank):

x1==x2 && x2!=x3 || x1<s || x1>c || x2<=x3 || x3>=x1

Note that the left hand operand must be a xtring (or casted to xtring)

Array subscript (x[n] retrieves a reference to the nth character [zero-based] within xtring x):

c=x1[n];

 10

x1[n]=c;

The size of the internal string buffer is expanded if necessary to ensure that the specified
subscript is valid (points to a character position within the internal string buffer). However,
the string itself is not expanded (i.e. the position of the trailing null byte, signifying the end of
the string, is not changed.

Collection class ListArray

ListArray is provided as a template that may be used to produce a dynamic collection of any
C++ object type. The collection behaves both as a double linked list and an array. The only
restriction is that the object class to be stored must have a valid default constructor.

Declare a type using this template as either:

typedef ListArray<MyObjectType> MyCollectionClass;

or (for collection classes containing additional members, apart from the ones inherited from
ListArray):

class myclass : public ListArray<MyObjectType>
{ ... };

where MyObjectType is any C++ class, struct, union, or simple type (int, float, double etc.).
Either of the above declarations will produce a class including the following public functions
and member variables:

void initarray(unsigned int nitem)
 Clears the list array (if not empty) and fills it with nitem MyObjectType objects.

MyObjectType& createobj()
 Creates a new object of type MyObjectType and returns a reference to it.

bool firstobj()

Causes the internal object pointer to point to the first MyObjectType object in the list
array. Returns false if the list array is empty.

bool isobj

This variable (NB: not a function) is true whenever the internal object pointer points to
a MyObjectType object, false otherwise (including when the list array is empty).

bool nextobj()

Causes the internal object pointer to point to the next MyObjectType object in the list
array. Returns false if the last item has already been reached.

MyObjectType& getobj()

Returns a reference to the object currently pointed to by the internal object pointer. Do
not call this function unless the pointer is pointing to a valid object (isobj=true).

unsigned int nobj

 11

 The number of objects currently stored in the list array.

void killobj()
 Removes the MyObjectType object currently pointed to by the internal pointer.

void killall()
 Clears the entire list array, releasing dynamic memory.

MyObjectType& operator[](unsigned int i)

Overload of the array brackets operator which returns a reference to the i’th
MyObjectType item in the list array. Do not call unless the internal object pointer is
pointing to a valid object. Note that this function does NOT affect the value of the
internal pointer.

It is possible to loop sequentially through all items in the list array using code like the
following:

mycollection.firstobj();

while (mycollection.isobj) {

 MyObjectType& obj=mycollection.getobj();
 // NB: '&' required unless query only

 /* query or modify object obj here */

 mycollection.nextobj();
}

or alternatively:

for (i=0;i<mycollection.nobj;i++) {

 MyObjectType& obj=mycollection[i];

 /* query or modify object obj here */
}

Estimating elapsed and remaining time with class Timer

The computer model for which gutil was developed can sometimes take many hours to
complete a simulation. It is desirable for users to obtain an ongoing estimate of progress and
remaining simulation time. This class provides the necessary functionality.

The following public member functions are provided:

void init()
Should be called before any other operations on a Timer object.

void settimer([double duration])
Commences timing: optional parameter duration gives number of seconds to "finished" status.

 12

void setprogress(double progress)
Specifies fractional progress (in range 0-1) towards "finished" status (modifies time remaining
to "finished")

double getprogress()
Returns fractional progress (in range 0-1) towards "finished" status

The following public data members are available (should be queried only):

int elapsed.hours elapsed full hours since timer set
int elapsed.minutes elapsed full minutes past the hour since timer set
int elapsed.seconds elapsed full seconds past the minute since timer set
int elapsed.milliseconds elapsed milliseconds past the second since timer set
char* elapsed.str elapsed time in the form "hh:mm:ss"
int remaining.hours full hours remaining to "finished" status
int remaining.minutes full minutes past the hour remaining
int remaining.seconds full seconds past the minute remaining
int remaining.milliseconds milliseconds past the second remaining
char* remaining.str elapsed time in the form "hh:mm:ss"

Sample program:

void slow(int i) {

 /* Do some number crunching */
}

int main() {

 const int STEPS=1e10;
 const int REPORT=1e9;
 int i;

 Timer t;
 t.init();

 t.settimer();

 for (i=0;i<STEPS;i++) {

 t.setprogress(double(i)/double(STEPS));

 if (!(i%REPORT)) {
 printf(“Elapsed time: %s\n”,t.elapsed.str);
 printf(“Remaining time: %s\n”,t.remaining.str);
 }

 slow(i);
 }

 return 0;
}

 13

Function unixtime

void unixtime(xtring& result)

Writes the date and time as a character string to result; e.g.

Tue Nov 06 10:17:47 2001

Contact information
Direct any queries to:

Dr Ben Smith
Dept of Physical Geography and Ecosystems Analysis
Lund University
Geocentrum II
22362 Lund
Sweden

E-mail: ben.smith@nateko.lu.se
URL: www.nateko.lu.se/personal/benjamin.smith

22 July 2006.

