LPJ-GUESS Reference — Draft as at 2010-11-22

Ben Smith, Joe Lindstrom

Draft only — do not distribute outside EMBERS anddt cite

BUILDING AND RUNNING

The easiest way to build LPJ-GUESS is to use CMakéake is not a compiler itself, instead
it generates a native build system for your platfaf choice. LPJ-GUESS has been built and
tested with CMake on the following platforms:

* Microsoft Windows with Visual Studio 6

e Microsoft Windows with Visual Studio 2008
e Linux with the GNU compiler

e Linux with the PGI compiler

In theory it should work on other platforms suppdrby CMake such as Borland or MinGW.

Installing CMake

CMake can be downloaded for free frémtp://www.cmake.org/ There are installation
packages for Windows, Mac OSX, Linux and other Usperating systems. Download a
package for your system and follow the installairmstructions.

To find out if CMake is already installed on yoystem, run the following command:

cmake --version

If you don’t have access rights to install softwaneyour system, CMake can be run from a
directory you do have access to.

During installation of CMake you will be asked whet you wish to add CMake to the
system PATH. It is recommended that you do so.

Compiling on Windows with Visual Studio

The following instructions apply for Visual Studiersion 6.0 or newer. On Windows LPJ-
GUESS can either be run as a command line progehl{ased) or in the graphical
Windows Shell where plots are displayed as outpgenerated.

Creating Visual Studio project files

After you've made sure CMake is installed, thetfatep is to use CMake to create project
files for your version of Visual Studio.

» Start the program cmake-gui (look under “All pragsd in your Start menu)

* Enter the path to the directory containing all tfRJ-GUESS files

» Enter a path to a directory where you want to pMiseial Studio files, for instance
the build directory in the LPJ-GUESS directory

It should look something like this:

. CMake 2.8.2 - C:/guess/build M =3
File Tools Options Help

Whete is the source codeyd | C:fquess | [Ernwse Source,]

Where to build the binariesty C:fguess/build V| [Browse Build. ..]

Search: I:I [Grouped [Advanced | =i Add Entry Remawve Enkry

Marme Walue

Press Configure to update and display new walues in red, then press Generate to generate selected
build Files,

Generate Current Generator: Mone :]

Click on theConfigure button to choose your version of Visual StudiateAfyou’'ve made
your choice and clicked Finish, cmake will try tod your installed C++ compiler and some
other things. When that’'s done you get a chancemndéigure how to compile LPJ-GUESS.

It should look something like this:

. CMake 2.8.2 - C:/guess/build =]
File Tools Options Help

=13

Where is the source code; |C:,|'guess | [Bru:uwse Source,,]

Where to build the binaries: |C:,l'guess,l'l:uuild V| [Browse Build, .,]

Search: I:I [] crouped [] Advanced Remove Enkry
Marne Yalue

Press Configure to update and display new walues in red, then press Generate to generate selecked

build Files,
iZenerate | Current Generator: Yisual Studio & :]
Check for working CX compiler using: Wisual Studioc & —- works M

Detecting CX¥H compiler ABT info
Detecting CX+ compiler ABT info - done
Configuring done v

At this point you can for instance change whichni@dule to use. Hover with your mouse
over one of the configuration options to get a dpon of what it does. After you're done
pressConfigure again to use the chosen settings. You can thess@enerateto create the
Visual Studio project files, they will end up iretbuild directory you chose earlier.

Compiling

Open LPJ-GUESS in Visual Studio by double clickimgone of the files generated by
CMake. If you're using Visual Studio 6.0 you shoolaen the Workspace file, called
guess.dsw. For newer versions you should haveuticoffile, called guess.sin.

In Visual Studio you should see at least two prisjeane called guess and one called
guesscmd. The first is for compiling the graphiMahdows Shell version, the other is for the
command line version. There is also a project dalleL_BUILD which forces compilation

of both guess and guesscmd.

Hit F7 to build everything (or choose Build frometBuild menu), you may see some
warnings but there shouldn’t be any errors.

Configurations (Debug/Release)

You can choose to build your program in differemual Studio configurations. The most
important ones are called Debug and Release. Thagdeonfiguration is the default and
should be used during development since it allogesty find problems in the code with the

built-in debugger. The Release configuration rasmltmuch faster programs however and
should be used when you run your model for real.

How to switch configuration is different in differeversions of Visual Studio. In Visual
Studio 6.0, choose “Set Active Configuration...” hetBuild menu. In newer versions there
is a “Configuration Manager...”-dialog under the Bumhenu where the active configuration
can be changed.

The compiled program will be placed in your buildedtory under a directory named as the
configuration you’re using. So if you have your ¥as$ Studio files under C:\guess\build, and
you're using the Debug configuration, you will fitlte compiled LPJ-GUESS program under
C:\guess\build\Debug.

Running

Command line
To run the command line version from within Vis&lidio you need to choose a Working
Directory and Program Arguments.

The Working Directory is the directory where thegnam will run, any relative paths that
you have in the instruction files are relativeh@s tdirectory. Some output files may be placed
in this directory, for instance the guess log file.

The Program Arguments should contain the patheortstruction file you wish to use
(absolute path or relative to the Working Directpry

How to configure these depends on your Visual $tudrsion. In Visual Studio 6.0, right
click on the guesscmd project and choose “Setting¥.ou’ll find the settings under the
Debug tab:

Project Settings

Settings For: |Win32 Debug j General Debug | CAC++ Lirk Resournc EE
+-[E8 ALL_BUILD _
- e Category:

ezzcrd

Executable for debug zegsion:
|I::ngess"-.build\[ﬁlebug'\guesscmd.exe j

wforking directan:

Progran argurnents:

Remote executable path and file name:

Ok I Cancel |

In newer versions of Visual Studio, right click e guesscmd project and choose
“Properties”. In Visual Studio 2008 the relevanttsmn is called Debugging, and looks like
this:

Configuration: | Active{Debug) | Platform: |Active(Wwin3z) i [Configuration Manager...]

#- Common Properties Debugger ta launch:

=I- Configuration Properties Local Windows Debugger o
General

Command $iTargetPath)
Command Arguments
- Working Directory
+- Manifest Tool Aktach Mo
+- =ML Docurment Generator Debugger Type Auko

+)- Browse Information
+- Build Events
+- Cuskom Build Step

Ervironment
Merge Environmenk Yes

Command
The debug command to execute.

l OF] [Cancel]

To start the program, make guesscmd the Activeept@pr StartUp project in newer versions
of Visual Studio) and hit F5 (for debugging) or I€EE5 (runs as a regular program).

Windows Shell

You'll find the Windows Shell program at windows rsmn\guesswin.exe in your LPJ-
GUESS directory. Copy the guesswin.exe file todinectory where Visual Studio has
compiled LPJ-GUESS (for instance build\Debug if yewsing the Debug configuration). If
the program compiled successfully you should hafie aamed guess.dll in this directory.

To start the program, make guess the Active prgm@cstartUp project in newer versions of
Visual Studio) and hit F5 (for debugging) or Ctrb-ffuns as a regular program). The first
time only, a window will appear, asking you to gpethe name and location of the
executable file. This is the Windows Shell fileggawin.exe. In the box labeled Executable
file name, enter the full pathname to the gues®xmyou just copied INMPORTANT :
make sure it's the guesswin.exe in the directorgnetyour newly compiled guess.dll O
OTHER COPY.

You can also run the model directly from outsidseuél Studio by executing (e.g. by double-
clicking) guesswin.exe. Again, it has to be thesgwan.exe in the directory where your
guess.dll is.

Adding new source code files

To add new source code files to the project, et af the CMakeLists.txt files. Each
directory with source code has its own CMakeListsgo if you want to add a file under
modules, edit the modules\CMakeLists.txt file.tigou will find a list of the headers and cpp
files, simply add your new file(s) to the appropeiéist(s).

If you're using Visual Studio 6 the project hasmreconfigured with cmake-gui after the
changes in CMakelLists.txt. Just go through the sarmeedure described above.

In newer versions of Visual Studio, the next tino@ Yuild your project the Visual Studio
project files should be updated automatically. Othey’'ve been updated you can build again
to actually compile with your new file(s).

Compiling on Unix systems

Creating build files

Start by using CMake to create build files and ggure how you want to compile LPJ-
GUESS. You can create the build files anywhereli@y for instance in the build directory
in the LPJ-GUESS directory. From that directoryy the command ccmake with the path to
the LPJ-GUESS directory as an argument, for ingtanc

| ccmake .. |

or (if you're not in the build directory):

|ccmake /path/to/my/Ipjguess |

This will start a configuration tool where you camose some settings. Press ‘C’ to get a list
of the settings you can change. Use the arrow teegavigate among the settings. Each
setting has a description, shown in the lower phtihe screen when you select it (you may
want to increase the size of your terminal to réadoperly.) When you're done, hit ‘c’ again
and then ‘g’ to generate the build files.

If you know that you will use the default settingghe configuration tool, you can skip this
step by running cmake rather than ccmake.

Compiling

After the project has been configured, stay indinectory where the build files were
generated and run the following command:

make

When make finishes, you should have an executabtgrgm named “guess” in the same
directory. You should also get a file named “sulbshit which is used when running on
parallel clusters.

Running

The generated program can be started either franditectory where it was created, or
copied to where you want to run your model. Ruhyitsupplying the instruction file as an
argument, for instance:

/home/sally/lpjguess/build/guess myinstructionfile.ins

or, start with -help to get a list of the availalyistruction file parameters:

|/home/salIy/ijguess/buiId/guess -help

These commands start guess as a regular prograururifong on parallel clusters, see below.

Adding new source code files

To add new source code files to the project, et of the CMakelLists.txt files. Each
directory with source code has its own CMakeListsgo if you want to add a file under
modules, edit the modules\CMakeLists.txt file.tigau will find a list of the headers and cpp
files, simply add your new file(s) to the appropeiést(s).

The build files will automatically update the néixbe you run make.

Changing compiler

The easiest way to change compiler is to supply ghasen compiler on the command line
when running ccmake, for instance, to choose topilerwith the Intel C++ compiler (called
icc):

|CXX=icc ccmake .. |

Compiler settings

To change the compiler settings, edit the CMakslivdt file in the root of your LPJ-GUESS
directory. Look for the CMAKE_CXX_FLAGS variableoFinformation on available
compiler flags, see the reference manual for timepsler used.

Organising your files

LPJ-GUESS lets you set up your model runs in mdifigrdnt ways. If you're not sure where
to place your instruction files, gridlists etc.istisection presents one way of working which
should work well for most users.

Let's say you're working on "Project X", to runteém simulations with LPJ-GUESS perhaps
with some modifications of the source code. Wekk the files for this project in a folder,
for instance C:\projectx.

Place your code in a sub folder of projectx. Fatance C:\projectx\guess. Especially if
you're getting the code from the version contretem it will be convenient to have the code
in a folder separate from other files such as uasion files and gridlists for your model runs.

When configuring your project with cmake, choosede the build folder
C:\projectx\guess\build.

10

Under C:\projectx you can create one sub-foldeetmh type of model run you will have. In
that folder you'll place the instruction file fdratt model run, and the output files will be
generated there. It should now look somethingtis:

e projectx

e guess

e scandinavia
0 guess.ins

* sweden
0 qguess.ins

e sweden_deterministic
0 qguess.ins

You may also want to place the gridlist for eachdeiaun in its folder. In that case you can
use a relative path for the gridlist in the instioe file, such as:

|param “file_gridlist" (str "gridlist.txt")

However, you may find that different model runs tieesame gridlist, or that you re-use
gridlists across different projects. In that casa gnay find it more convenient to have a
separate folder with gridlists, and to specify dbgopaths in your instruction files:

|param “file_gridlist" (str "C:\gridlists\sweden.txt")

Similarly you will probably prefer to place forcimtata etc. in separate folders and use
absolute paths for those files in the instructiden f

Compiling and running on parallel clusters

Running the model on a cluster often means sulmgittijob to some kind of queue system.
There may also be system dependent steps involiddas copying files to or from the local
compute nodes where the program is running. Thie Bystem can generate a script for you
which takes care of this, but that script is getegtdor a specific system.

The SYSTEM configuration

When you run ccmake you can choose to configur&¥eTEM variable. If you leave it
empty the build system will generate a submit $ddpENES’ internal cluster Simba.
Currently the only other option is to set the SY &M tariable to “milleotto” for running on
one of Lunarc’s clusters.

If you need to run on a different system you neecréate your own submit script. The script
generated for Simba can be a good starting point.

Adapting your job

The following requirements must be neiactly. If not, the job will not work as expected or
may not work at all.

11

Requirement 1: gridlist file

Grid cells / site coordinateaust beread from one plain-text gridlist file (one rowrpggid

cell). Other solutions, e.g. a lat-lon window, wilht work with these tools. Your best bet is to
modify your setup and implement a gridlist file.

Requirement 2: gridlist must end with newline

Ensure that the last line of the gridlist file endth a "newline” character, otherwise the last
grid cell will not be simulated. If you are unswvbether this is the case, add a blank line at
the end.

Requirement 3: there must be an ins file

Requirement 4: output files must be plain textsfile

All output files must be plain text files with oritlvout one leading row containing a header or
column labels (or a blank first row). If your outgiles do not meet these conditions, they
will still appear for subsets of gridcells in theniX subdirectory for each process (see
Running your job) but combined files containingputtfor all gridcells will be corrupted or
may not be created.

Requirement 5: file names must be specified theecoway

File names in the ins file and/or input/output miediguessio.cpp or equivalent) must be
specified in the correct way: some filesist be specified as simple file namewith no
directory part while otheramust be specified asfall path name including a directory
part.

The rules are as followRead carefully and follow exactly

- Full absolute pathnames must be given foinglut files the model requires (NB: except the
gridlist file, see next point), whether these grecified in the ins file or in the code:

OK:
param "file_cru" (str "/home/ben/archive/gmu/cru_1901-1998.bin")
file_soil="/home/ben/archive/env/cralee/solpj.dat";

NOT OK:
param “file_cru” (str "cru_1901-1998.bin")
file_soil="../guess/soils_Ipj.dat";

- The gridlist file name must be given asiaple file namewith no directory part, whether
it is specified in the ins file or in the code. Hever, a full or relative pathname for the gridlist
file may be specified, if required, in the subnaitigt (see Running your job):

OK:
param “file_gridlist” (str "gridlist.txt")
file_gridlist="gridlist.txt";

NOT OK:
param “file_gridlist” (str "/home/ben/guapsdlist.txt")
file_gridlist="../gridlist.txt";

12

- Output file names are specified fike names onlywith no directory part, whether these
are specified in the ins file or in the code:

OK:
param “file_cmass" (str "cmass.out")
file_flux="flux.out";

NOT OK:
param “file_cmass" (str "/scratch/fred/guesfcmass.out")
file_flux="../guessrun/flux.out"

Running your job

1. Create or go to a directory in which to run the elodhis will be called theun
directory. Some systems might have recommendations abouewdhelace such a
directory. It needs to be a place which is accés$ibm the compute nodes. On
Simba for instance you should place it under youn directory under /scratchpt
under /home. There is a workspace with your userenander /scratch:

cd /scratch/sally
mkdir guessrun
cd guessrun

2. When the model was compiled, a file named “subhiitskiould have been generated
as well. Copy it to the run directory:

|cp /home/sally/Ipjguess/build/submit.sh .

(don't forget the ‘. at the end!)

3. Open submit.sh in a text editor and set appropvialiges for the following variables:
- NPROCESS
- WALLTIME
- INSFILE
- GRIDLIST
- OUTFILES

The meaning of these variables is documented isubenit script.
4. Start the job:

sh submit.sh |

Once the job starts it will create a number of stdmdories called runX (X=process number),
one for each process/node in the parallel job.Wghty equal chunk of the gridlist file and a
copy of the ins file appears in each subdirectOutput appears in each subdirectory (for the
gridcells listed in the gridlist file there) and,the end of the run, in the run directory (all
gridcells).

Checking progress etc.

13

A log file for each subprocess (guess.log) appsaits corresponding runX subdirectory.
You can display the last few lines of each log filecheck progress by entering the following
command in the run directory:

|sh progress.sh

The queue system used on the cluster should dlgodeguery the status of your job. On a
cluster with PBS (like Simba), you can run onehafse commands:

gstat
gstat -u <user-name>
gstat -f <job-id>

The first shows all queued and running jobs. Tlo®seé shows your jobs. The last shows
more details about one job. When you submit yohrtlee submit script will print out the job-
id.

To cancel a running job, delete it using:

|qde| <job-id>

Final output appears in the run directory. A loghbwgome additional messages appears in
files called something like guess.oXXX and guesXXXn the run directory, where XXX is
the job id of your job. In the event of errors théides may provide some clues.

Troubleshooting

If it doesn’'t work:

» Carefully reread Adapting your job above, espegiafuirement 5
e Carefully reread Running your job above

« Check for error messages in guess.oXXX and gueX¥XeXee Checking progress
etc.

Specific problems and possible causes:

PROBLEM: Doesn't seem particularly fast for a supercompuitem trying this out for one
grid cell.

POSSIBLE CAUSE: There is no point running a parallel job for omiel gell, since the grid
cells are divided equally between processes (nodes)

PROBLEM: Seems very slow, same grid cells appear sevaraktin output.
POSSIBLE CAUSE: Path name specified for gridlist file in ins fie i/o module. File name
only (no directory part) must be specified. Seaim@gnent 5 above.

PROBLEM: Runs for several hours then stops before all gglts have been processed.
POSSIBLE CAUSE: Maximum time for job exceeded. You need to speaifgnger wall
clock time in the submit script. See Running yal. |

14

PROBLEM: Job seems to run and finish normally, but no aufifes appear in the run
directory.

POSSIBLE CAUSE: Incorrect or missing output file list in submitigdt. Should be a space-
delimited list of file names including extensiomslavith no directory part. See Running your
job.

PROBLEM: Output files are unreadable or corrupted.

POSSIBLE CAUSE: The model (input/output module) is producing ottjdas in the wrong
format. Output files must be plain text files wahwithout ONE initial row containing header
information, column labels or a blank line. Seeursgment 4 above.

PROBLEM: Output is missing for the last grid cell in thedgjst file.
POSSIBLE CAUSE: The last line of the gridlist file does not endwa newline character
(see requirement 2 above). Add a blank line aetigeof the gridlist file.

PROBLEM: Job seems to enter the batch queue but crashesdiaiely after start.
POSSIBLE CAUSE: Format errors or incorrect file names specifiedubmit.sh. (NB: no
space allowed after "=" in variable assignmentg® Bunning your job.

PROBLEM: Job appears in batch queue but never seems to star

POSSIBLE CAUSE: You are requesting more processes than thereodesravailable.
Your job will start when there is one free nodedach process. Simba has (at the time of
writing) around 90 nodes, but some may be reservedé by other users. Try requesting
fewer processes for your job. See Running your job.

LPJ-GUESS ARCHITECTURE

15

16

Architecture of LPJ-GUESS

LPJ-GUESS is designed to provide a flexible platfdor modelling ecosystem structural
dynamics and functioning. The version describe@ Ieea combined implementation of two
previously-developed dynamic ecosystem models -[MBYM (Sitch et al 2000, 2003;
Bachelet et al. 2003; Cramer et al. 2001, 2004tgBest al. 2004) and GUESS (Smith et al
2001, Hickler et al 2004). In principle, other mbfigmalisms could be constructed with
only limited changes to the overall architectunetarms of data structures and flow control.

This is possible for two reasons. Firstly, the elazbde is organised into well-
defined modules. Each module (with the exceptiomoflules having a primarily "technical”
function — for example, input and output of drividgta and results) encompasses a relatively
well-defined, related subset of ecosystem procesghsa distinct spatial and/or temporal
signature. A central framework, containing all esiploops through space (stands, patches)
and time (days, years) in the model, binds the nesdiwgether and manages the exchange of
data between them. The modular structure is dedigmeeflect the ways in which different
ecosystem components and functions are actuakgdiim nature, making it largely
independent of the assumptions and generalisabioasy particular model. The modules,
framework and links between them are describedib€elie main links between modules and
the framework are shown schematically in Figure 2.

Secondly, data (driving environmental data, eciesysstate variables, static
parameters for PFTs, soils etc) are exchanged katw®dules via hierarchically-organised
'objects' (compound data structures, or classegfwdorrespond to real ecosystem
components — stands, patches, soils, individuaitpletc. Whereas the specific variables
associated with each object, and parameterisatibtie processes acting on them, might
vary for different models, the objects themselael the hierarchical links between them,
should not. The classes in which the main objeeslafined are described in detail in the
section "LPJ-GUESS classes", below.

The framework

The framework (Figure 1), comprising the sourceecfilé guess.cpp and header file guess.h,
is the "mission control" of the model. It:

« containsall explicit loops through space (stands/localitied/gells, patches) and time
(days, years) in the simulation. Timing loops agstad so that there is no "time
travel” —no process is ever fed information about a particalay or year until that
day or year is reached in the hierarchy of timingps

» defines the main objects (classes such as Pfjithdil, Climate, Soil etc; see section
"LPJ-GUESS Classes", below) and global variablas (ke number of years to
simulate, the number of replicate patches in etards patch size, the simulation time
step). The global utility functions dprintf, faplot etc, which are available throughout
the model code, are declared in the framework hrddddébut defined in the main
module).

« performs most calls to process functions withinrtfa@ules, at the appropriate stage
in the simulation (a few such calls are delegabetthé¢ modules themselves), and
thereby manages exchange of data between the nsodule

initialise
input/output
initio

once per stand

daily processes

daily input

input stand

> static properties
getstand

A

initialise stand and
soil static properties
stand.climate.
initdrivers
initsoildrivers

annual processes

turnover,
C allocation, growth
growth

next patch

vegetation dynamics
disturbance
vegetation_dynamics

next patch

annual output
outannual

next year

next stand

terminate
input/output
termio

Figure 1. Flow structure of framework.

stand climate
getclimate

\ 4

A

daily stand climate

driver calculations
dailyaccounting_stand

daylengthinsolpet

A

daily patch soil driver
calculations
dailyaccounting_patch

A

leaf phenology
leaf_phenology

A

C&H,0
canopy exchange,
potential growth at

forest floor
canopy_exchange

A

soil water and
show pack dynamics
soilwater

A

soil organic matter
dynamics
som_dynamics

next patch

next day

18

Modules

The modules, in addition to the framework, framedwoeader file and binary libraries gutil
and plib, are the components of computer codentiade up the coupled model structure. The
modules and their main functions are listed here.

Main module (main.cpp, [main.hBrovides the interface between the model framewaock
the calling process (generally the operating systeommand line; alternatively, another
piece of software, such as the LPJ-GUESS windowb)simplements the global functions
dprintf, fail, plot etc. which are available thrdwgut the code of LPJ-GUESS.

Input/output module (guessio.cpp, guessi®bBads simulation settings and PFT parameters
from the instruction script (ins file); reads aifdequired, preprocesses climate and soil data
used to drive the model; handles most output &3 fihs well as the screen log and/or log file.
It is the user's responsibility to provide code donumber of required input and output
functions see the section "Input/output”, below.

Driver module (driver.cpp, driver.l§ontains various functions for "preprocessing"
environmental driver data to produce values fordtigng parameters actually used by the
process modules of the coupled model (e.g. caksifadtential evapotranspiration,
photosynthetically active radiation and daylengikien latitude and percentage of full
sunshine; calculates soil temperature given aipggature and soil moisture status;
interpolates monthly climate means to quasi-dadllygs); maintains records of climate (e.g.
mean temperature for the last month; minimum coldemnth temperature for the last 20
years); updates various climate, soil and PFT st@t@bles. Most functions are called from
framework or input/output module.

Canopy exchange module (canexch.cpp, canexEraity calculations of canopy-atmosphere
exchange of bD and CQ; AET (actual evapotranspiration); vegetation Ciragation,
autotrophic respiration, NPP, FPAR (fraction ofaning photosynthetically-active radiation
used in photosynthesis), potential productivitjoaest floor. NPP (photosynthesis and
autotrophic respiration) calculations may be pened monthly rather than daily to increase
simulation rate.

Soil water module (soilwater.cpp, soilwaterdgily update of soil moisture status and
snowpack size; runoff.

Soil organic matter dynamics module (somdynam.spmdynam.hpaily (or monthly)
calculations of heterotrophic respiration and upddtlitter and SOM (soil organic matter)
pool sizes.

Growth module (growth.cpp, growth.Biily update of leaf phenology; annual litter
production and tissue turnover; annual allocatibassimilated C to plant tissues and
reproduction; annual update of individual allomgsize, crown area etc).

Vegetation dynamics (vegdynam.cpp, vegdynarAnrmual population dynamics
(establishment and mortality), including introdoctiof new PFTs, disturbance by fire,
generic patch-destroying disturbances in cohoiit/iddal mode.

19

Libraries

Two binary libraries are currently required to builPJ-GUESS. The libraries provide
functions and classes of a purely technical natdnieh primarily serve to simplify the code

of LPJ-GUESS itself. The functionality from therinies most likely to be accessed by users
and developers of the model code are describeavielthe sections "LPJ-GUESS classes"
and "Input/output”. Additional information is givets commenting in the library header files,
plib.h and gutil.h.

.h .h

guess.cpp

guessio.cpp
.h .h
.h

somdynam.cpp vegdynam.cpp

canexch.cpp

driver.cpp

growth.cpp

soilwater.cpp

guess.h

main.cpp

Figure 2. File structure of LPJ-GUESS. The file structureéhed model reflects its modular
design. Each module has its own source code fideKlpand header file (red). The

framework is also represented by a source codé¢diless.cpp) and a header file (guess.h).
The header files provide the links that give moduad the framework access to each others'
functions, classes or data (an arrow in the diagramts to the module or framework file
accessed via declarations in the adjoining heal@@r The main module has a purely
technical function — providing an interface betwés® model code and the platform
(operating system etc) on which it is run. Not showthis figure are the custom libraries

gutil and plib which are required (as binary arehor library files) to build LPJ-GUESS.

20

LPJ-GUESS CLASSES

This section deals with the classes defined ifrdmaework header file for LPJ-GUESS
(usually called guess.h). These classes are the meadium by which data (environmental
drivers, ecosystem state variables, PFT statiopetexrs etc) are exchanged between modules
and managed by the framework. Special operatiandefined for some classes, and the use
of these is also explained. Unavoidably, some pdrisis section assume familiarity with
some technical aspects of the C++ language; "CH> bexes are included to provide some
help with these concepts.

21

Pftlist

Standpft
Standpft
Standpft i
Pft
stand B Climate Patchpft
Patchpft Pft
Patch Patchpft
Patch V\ Individual
Patch Vegetation / Individual
. Individual
Soiltype Fluxes
Date \ Soil

Figure 3. Class objects in LPJ-GUESS and relationships twieem. Grey shading indicates membership of tdhjeithin a "parent” class
(for example, objects of classes Standpft, Clinaaie Patch are members of class Stand). Arrowsgeptreeference members: the cliem
which the arrow points contains a reference tqplaeent) objecto which it points (for example, each Climate objgattains a reference
member variable to the parent Stand object).

Class objects defined in LPJ-GUESS

22

LPJ-GUESS uses, in a limited way, objeq
oriented features of the C++ language. All st{
and driver variables and nearly all staf
parameters are collected within classes. Clas
are compound data structures which can coni
both data (simple variables, arrays or oth
classes) and functionality.

For each modelled locality, or grid cel
there is a single object of the class Sta
containing all dynamic and static informatig
specific to that locality, including the climatg
soil and vegetation. Subsidiary to the stand
the patch, of which there may be of
(population mode) or several (cohort ai
individual modes) in each stand. Patches

C++ Help: Classes

Classes are compound data types which may
contain both data and functionality. The data
contained within a class may be simple
variables, arrays, or objects of other class typ
Each data object is called a member variable
Classes may also contain member functions.
Typically, but not necessarily, these perform
operations using or modifying the member
variables. Both member variables and memb
functions are accessed using the class memjf
('.") operator. For example, the code

ben.height accesses the height member
variable of a class object called ben; the codd
ben.volume() calls the object's member
function volume.

es.

represented by an object of class Patch w

TCTT

contains information about the soil, snow paclkére is one, and vegetation. Objects of class
Individual contain information describing the awggastatus of individual plants and are
therefore subsidiary to the patch. Static pararadtarplant functional types (PFTs) are also
organised into a class, Pft, objects of which &weesl as part of a collection class, Pftlist.
The globally-defined classes used by LPJ-GUESSraladionships between them are
illustrated in Figure 3. A detailed descriptioneaich class is given below. Even more detail is
provided by documentation in the framework headker, Quess.h, where the classes are

defined.

Object of classtand

Top-level object containing all dynamic an
static data for a particular stand (modell
locality, or grid cell). Member data include 3
object of type Climate, an object of typ
Soiltype, a list of Patch objects, and a list
Standpft objects. Class Stand inher
functionality from the collection class templa
ListArray_idin3 in the gutil library (templates
defined in gutil.h). Use syntax like th
following to loop through and retrieve memb
Patch objects:

/I Assume stand is an object of
/I class Stand

/I Either:

for (p=0; p<npatch; p++) {
/I Retrieve patch as an
/[array element

Patch& patch=stand[p];
/I NB: '&' is necessary

C++ Help: Collection classes

A collection class is a class (compound data
structure) that includes member functions for
managing lists, arrays or other ‘collections' off

data, usually of a particular type. LPJ-GUES$

uses collection classes called 'list arrays' whi
inherit their functionality from templates
defined in the Guitil library (one of the custom

libraries required to compile LPJ-GUESS). The

use of templates means that different list arrg
classes can accomodate different types of dd
For example, classes Stand and Vegetation 3
both collection classes which inherit
functionality from the template class
ListArray_idin2, but class Stand 'contains’
objects of class Patch, whereas Vegetation
contains objects of class Individual. The list
array types defined in Gutil provide functions
for: (1) initialising or clearing the collection of
objects; (2) adding a new object to the
collection; (3) removing an object from the
collection; (4) iterating (stepping) through the
collection in sequential order; (5) accessing
objects in the collection by index, i.e. as 'arra
elements. Objects in the collection can be
queried or modified directly — there is no nee
to create a new copy in memory.

D

Ch

Yy
ta.

e

/I'if modifying patch

23

/I Query or modify patch here
}

/I Or:

stand.firstobj();
while (stand.isobj) {

/I Retrieve patch as a

/l'linked list element

Patch& patch=stand.getobj();
/I NB: '&' is necessary
/I'if modifying patch

/I Query or modify patch here

stand.nextobj();

}
Object of clas$Standpft
Object containing data common tall

individuals of a particular plant functional typ
(PFT) in a particular stand (modelled locality,
grid cell). Used only in cohort and individug
modes. State variables for theverage
individual of a PFT population in populatiof
mode are part of class Individual, not Standp
PFT static properties ("PFT parameters") &
stored in objects of class Pft, not Standg
Standpft objects are stored within a dynan
collection class object called pft which is
member of class Stand (see above). T
Standpft corresponding to a particular PFT ir]
particular stand can be accessed using the ig
code) member of the associated Pft object, {
array-like syntax, similar to the following:

/I Assume stand is an object of
/I class Stand
/I pft is an object of class Pft

Standpft& standpft=stand.pft[pft.id];
/I NB: '&' is necessary
/I'if modifying standpft

/I Query or modify standpft here
Object of clas€limate

Contains all static and dynamic data relating
the overall environmental properties, other th

soil properties, of a stand (modelled locality,

C++ Help: References

A reference is an alternative name for an objg
(such as a variable or class object) residing
somewhere in memory, by which the object ¢
be accessed and queried or modified. A
reference is similar in effect to a pointer (a
variable holding the address of the object in
memory), but avoids the need for sometimes
confusing pointer syntax. Reference variable
must be initialised when declared and, unlike
pointers, can not subsequently be made to rg
to a new object. Once declared and initialised
the reference name can be used exactly as if
were the 'real' name of the object it refers to.
The symbol ‘&' after the type name in a
variable (or class) declaration indicates that g

variable of a reference type is being declared.

For example, the following code declares a

pCt

an

fer

it

reference variable called result as an alternatjive

name for a variable called value.

int value;
int& result=value;

Several LPJ-GUESS classes include one or
more reference member variables referring tq
an object of another class. For example, clas
Vegetation includes a reference member call
patch which refers to the parent Patch object
The following line of code retrieves the Patch
object associated with a Vegetation object
called vegetation and assigns the value 0.5 t
the member variable fpar_grass of the Patch
object:

vegetation.patch.fpar_grass=0.5;

Functions may also have a reference type. T
means that they return a reference to an objg
residing somewhere in memory, rather than 4
copy of the object. For example, the various
'list array' classes (Stand, Vegetation, Pftlist)
used in LPJ-GUESS all include the member
function getobj, which returns a reference to
the 'current' object in the collection of objects
maintained by the class. The following line of
code retrieves the current Pft object from a
collection maintained by an object of class
Pftlist and assigns the value 250.0 to the
member variable longevity of the Pft object:

pftlist.getobj().longevity=250.0;

In LPJ-GUESS reference types are used in
preference to pointers wherever possible. Th
improves readability of the model code and
makes much of the internal functioning of the

U

ed

his
ct
l

n

collection classes invisible to the 'us

24

grid cell), i.e. temperature, precipitation, ragiat atmospheric COconcentration, derived
parameters such as heat sums (growing degree-@By3), as well as latitude and day length.
Soil static parameters are stored in an object rajther class, Soiltype, which is also
subsidiary to Stand; soil dynamic properties may VYar different patches and form part of a
different class, Soil, subsidiary to the patch (bekw). Class Climate includes a reference
member variable which refers back to the Standabbpé which the Climate object is a
member. The parent Stand object can therefore lbessed using syntax such as the
following:

/I Assume climate is an object of class Climate
Stand& stand=climate.stand; // NB: '&' is necessary if modifying stand

/I Query or modify stand here
Object of clasSoiltype

Stores soil static parameters. One object of cia#type is defined for each stand. Soil
dynamic properties form part of class Soil, objeaftsvhich are subsidiary to the patch (see
below).

Object of clas#atch

Stores data specific to a patch. In cohort andviddal modes, replicate patches are required
in each stand to accomodate stochastic variatioosadhe site. In population mode, each
stand contains just one subsidiary patch, repreggaverage conditions for the entire stand.
However, class Patch could be easily extended geesent within-stand heterogeneity, for
example, with respect to soil properties. Membda daclude objects of type Vegetation,
Soil, Fluxes and a list of Patchpft objects. CIRssch includes a reference member variable
which refers back to the Stand object of whichRlaéch object is a member. The parent Stand
object can therefore be accessed using syntaxasuttte following:

/I Assume patch is an object of class Patch
Stand& stand=patch.stand; // NB: '&' is necessary i f modifying stand

/I Query or modify stand here
Object of clas$atchpft

Object containing data common &bl individuals of a particular plant functional tyfReFT)

in a particular patch, including litter pools. &tatariables for thaverage individuabf a PFT
population in population mode are part of classviddal, not Patchpft. PFT static properties
("PFT parameters”) are stored in objects of cldgsnBt Patchpft. Patchpft objects are stored
within a dynamic collection class object called phiich is a member of class Patch (see
above). The Patchpft corresponding to a particplich can be accessed using the id (id
code) member of the associated Pft object, ang-fika syntax, similar to the following:

/I Assume patch is an object of class Patch
/I pft is an object of class Pft

Patchpft& patchpft=patch.pft[pft.id];
/I NB: '&' is necessary if modifying patchpft

25

/I Query or modify patchpft here
Object of clas¥/egetation

A dynamic list of Individual objects (see belowgpresenting the vegetation of a particular
patch. Class Vegetation inherits functionality fromme collection class template

ListArray_idin2 in the gutil library (templates dieéd in gutil.h). Use syntax like the

following to loop through and retrieve member Indual objects:

/I Assume vegetation is an object of class Vegetati on

vegetation.firstobj();
while (vegetation.isobj) {

/I Retrieve Individual as a linked list element
Individual& indiv=vegetation.getobj();
/I NB: '&' is necessary if modifying patch

/I Query or modify patch here

vegetation.nextobj();

}

New Individual objects (corresponding to a PFT papaon, cohort or individual plant; see
class Individual, below) can be added to the dyrdisi using the createobj member function
of class Vegetation. The Pft objects associatetl Wie new Individual object, and also the
Vegetation object itself, must be specified as arguts to createobj, i.e.:

/I Assume pft is an object of class Pft

vegetation.createobj(pft,vegetation);

An Individual object may be removed from the dynanist using the killobj member
function. The internal object pointer must first et to point to the Individual object to
remove. For example, the following code loops tfoall Individual objects in the dynamic
list, removing those for which the condition sue(elimate,indiv.pft) returns false:

vegetation.firstobj();
while (vegetation.isobj) {
Individual& indiv=vegetation.getobj();
if (survive(climate,indiv.pft)) vegetation.killob ;
else vegetation.nextobj(); // advance pointer only if indiv not killed

}

Class Vegetation includes a reference member Janabich refers back to the Patch object
of which the Vegetation object is a member. TheeparPatch object can therefore be
accessed using syntax such as the following:

Patch& patch=vegetation.patch; // NB: '&' is necess ary if modifying patch

/I Query or modify patch here

26

Object of classoill

Stores state variables for soils and the snow paok. object of class Soil is defined for each
patch. Class Soil could easily be extended to delother environmental properties varying
at spatial scales smaller than the stand (mod&leality, or grid cell). Class Soil includes a

reference member variable which refers back taPéteh object of which the Soil object is a
member. The parent Patch object can therefore lessed using syntax such as the
following:

/I Assume soil is an object of class Soil
Patch& patch=soil.patch; // NB: '&' is necessary if modifying patch
/I Query or modify patch here

Soil also includes a reference member variablerniate to the Soiltype object containing
static parameter values for this soil. Static pat@ns for this soil can therefore be accessed as
in the following examples:

k=((soil.soiltype.thermdiff _15-soil.soiltype.thermd iff_0)/0.15*
soilwater+soil.soiltype.thermdiff_0)*DIFFUS_CONV;

perc=soil.soiltype.perc_base*pow(wcont[i-1],s0il.so iltype.perc_exp);
Object of clas$luxes

Stores daily and accumulated biogeochemical fluRéspresent only fluxes of carbon are
defined. Fluxes from ecosystems to the atmosphereepresented by positive values, fluxes
from the atmosphere to ecosystems as negativesvaluee object of type Fluxes is defined
for each patch. Class Fluxes includes a referermmbrar variable which refers back to the
Patch object of which the Fluxes object is a memblee parent Patch object can therefore be
accessed using syntax such as the following:

/I Assume fluxes is an object of class Fluxes

Patch& patch=fluxes.patch; // NB: '&' is necessary if modifying patch

/I Query or modify patch here
Object of clas$ndividual

Stores state variables for an average individuahtplin population mode, this is the average
individual for the entire 'population’ of plants afparticular functional type (PFT) over the
modelled area. In cohort mode, it is the averadgeidual of a cohort of plants approximately
the same age and from the same patch. In individuade, it corresponds to an actual
individual in a particular patch (there is no aygng among similar individuals). Grass PFTSs,
however, are represented by a single average thdils in each patch, regardless of mode.
Class Individual includes the reference memberatbéei pft, which refers to the Pft object
(see below) containing static parameters for th€ Fwhich the individual belongs. This Pft
object can be accessed using syntax such as thevifag:

27

/I Assume indiv is an object of class Individual
Pft pft=indiv.pft;

/I Query pft here

Class Individual also includes a reference memhbmtakle which refers back to the
Vegetation object in which the Individual objectstored. Class Vegetation, in turn, includes
a reference to the parent Patch object (see clagsgstation and Patch, above). The Patch
object can therefore be accessed using syntaxasuttte following:

Patch& patch=indiv.vegetation.patch;
/I NB: '&' is necessary if modifying patch

/I Query or modify patch here

See class Vegetation (above) for details of hoad and remove Individual objects from the
dynamic list in which they are stored.

Object of clas#ftlist

A dynamic list of Pft objects (see below). In gealgthere should be just one Pftlist object,
containing static parameters for all possible plé&mctional types (PFTs). The static
parameters for a particular PFT are accessed lgctsbpf class Individual, Patchpft and
Standpft via their pft reference member variabke (descriptions of these classes, above).
Class Pftlist inherits functionality from the catteon class template ListArray _id in the guitil
library (templates defined in gutil.h). Use syntiilse the following to loop through and
retrieve member Pft objects:

/I Assume pftlist is an object of class Pftlist

pftlist.firstobj();
while (pftlist.isobyj) {

/I Retrieve Pft as a linked list element
Pft& pft=pftlist.getobj();

/I NB: '&' is necessary if modifying pft
/I Query or modify pft here

pftlist.nextobj();
}

Pft objects in the dynamic list may also be acabsseng array-like syntax. The following
code accesses the Pft object with id code (valueé wiember variable) 5:

Pft& pft=pftlist[5];
Object of clas$ft

Stores static parameters for a plant functionaét¢ipFT). Pft objects are stored within the
dynamic list maintained by the (one and only) obgdype Pftlist (see above). There should
be just one Pft object for each PFT. Different ager individuals of the same PFT (for
example, representing different annual cohortspamupying different patches) access PFT

28

static parameters via their pft reference membaabke, which refers ("points to") the same
Pft object in the PFT list.

Object of clasPate

Class Date is a general-purpose class providirgalad functionality for handling simulation
virtual time. In general, the framework module didomnaintain a single object of type Date
for stepping through simulation time (on a timepstd one day). This object should be
accessible from all modules (declared as an 'eéxtbjact in the framework header file). Date
contains the following member functions and vaeabNote that variables should dpgeried
only, never modified (except indirectly by callsmt@mber functions init or next):

void init (int nyearsim)
Called to initialise timing to day 0 of year 0. Rareternyearsimmay be set to the
number of years to simulate (then member variadiestiyear will be set to true in the
last year of the simulation).
void next()
Called at end of each simulation day to updatermétion stored in member variables.
int prevmonth()
Returns the number (O=January, ..., 11=Decembédheoprevious simulation month.
int nextmonth()
Returns the number of the next simulation month.
int day
The current Julian day of the year (0=1 Jan; 1¥2 Ja 364=31 Dec).
int dayofmonth
The current day of the current month (0-27, 0-29-80 depending on month).
int month
The number of the current month (O=January, .=DEcember).
int year
The current simulation year (0=first year).
boolislastyear
Value is true if this is the last year of the siatidn, otherwise false.
boolislastmonth
Value is true if this is the last mont the yeay otherwise false.
boolislastday
Value is true if this is the last day the monthotherwise false.
boolismidday
Value is true if this is the middle day of the ntfgmtherwise false.
int ndaymonth[12]
The number of days in each month (e.g. 31, 283G61..., 31).

29

INPUT / OUTPUT

This section is in two parts. The first descrildes input/output module of LPJ-GUESS,
through which all driver data and most static pagtars are fed to the model framework.
Users of LPJ-GUESS will normally have to write partof the code of the input/output
module themselves, to suit their particular applicéion, driver data (file formats, etc)

and output requirements. This part explains how to perform such coding. $aeond part

of this section deals with input/output using "atres” in the C and C++ languages. It includes
recommendations as to which functions from thedsesh C/C++ libraries and the custom
libraries forming part of LPJ-GUESS should be ugegderform input and output-related
operations such as opening and closing files, aading and writing data to and from files,
the keyboard and the screen. There are also lynepses and example code explaining how
all the recommended functions may be used.

30

Input/Output Part 1:
The input/output module of LPJ-GUESS

The default input/output module (guessio.cpp) isa sections. The first section is
concerned with reading settings from the instructoript (.ins file), which contains run-time
model configuration settings and plant functioyplet (PFT) parameters. This section need, in
general, not be modified by users of the modehaaigh it is relatively easy to add new
settings which can be read from the ins file, fcaraple, if new PFT parameters are added to
the model.

The second section of the input/output moduleaiostthe code for five standard
input/output functions which, by default, are cdllgy the framework, to initialise
input/output (open files, etc), read environmeadtaler data for each grid cell and year,
output results for each grid cell and possibly yaad terminate input/output (close files, etc).
The second section may also contain additionaltions subsidiary to these primary
input/output functions. It may also contain glotdata at file scope.

In general, it is the responsibility of each uséthe model to provide code for the
second section of the input/output modilee version of guessio.cpp normally distributed as
part of LPJ-GUESS is @monstration only

The instruction script

The instruction script (or "ins file") is a plaiext file that contains (1) simulation settings,
such as the number of years to run each simulédiprvhether to model certain processes
stochastically or deterministically, whether to the model in population, cohort or
individual mode; (2) PFT static parameters; and'¢8stom" information as required by a
particular version of the input/output module, éxample, the directories in which
environmental data files are found. LPJ-GUESS tssdtionality from the "plib"” library
(which is required to build an executable of thedeldto read settings from the ins file.
Details of plib functionality are given in the ldny's header file, plib.h, which should be
consulted if adding new general settings for inclsn the ins file.

Note, howeverthat "custom” settings can be added to the lesdnd read in by the
input/output modulewithout any modifications to Section 1 of the inputput moduleThis
is possible by virtue of the functionality provideg class Param, which is defined locally in
guessio.cpp.

Custom "param" settings in the ins file

Custom keywords may be included in the ins filemgsyntax similar to the following
examples:

param "co2" (num 340)
param "file_gridlist" (str "gridlist.txt")

The first example above specifies a numerical véBdé, or 340.0) for a parameter called
"co2"; the second example specifies a charactegsttgridlist.txt”) for a parameter called
"file_gridlist".

31

When the ins file is read (by the call to functr@adins in functioninitio ; see below), all
"param” settings, like the ones above, are stoyamhtinstance of class Param (with a capital
"P") called param (small "p"). The object parandesined at file scope throughout
guessio.cpp, which means that the data it stor@scisssible anywhere within guessio.cpp.

The values associated with the "param” stringhénabove examples can be retrieved using
the following function calls (which may appear amgre in guessio.cpp; remember ttie
ins file must have been read in f)st

param[‘co2"].num
param|[“file_gridlist"].str

Each "param” item can stoeghera number (int or doubley a string, but not both types of
data. The global functiofail is called to terminate output if a "param” itenthwtihe specified
identifier was not read in.

A list of the keywords recognised (and, in mostesa required) in the ins file for the
default input/output module of LPJ-GUESS can baioled by running the model with the
command-line argument "-help". The keywords are hAsded in an appendix to this
reference.

Standard input/output functions

The second section of the input/output module mastally contain definitions of five

specific functions, which provide the interfacehe framework (normally guess.cpp), and
which the framework expects to exist in the inputipeit module. If any of these functions are
missing, the model will normally not compile (ofurse, changes to the framework may make
any of these functions redundant, or may add a#ggrired input/output functions). It is
normally the responsibility of the user of the miadeprovide appropriate content for the five
standard functions. The specifications for eaclction, including the information it is
expected to provide to the framework, are descriizodw.

void initio (int argc, char*argv[], Pftlist& pftlist)

Initialises input/output (e.g. opening files), setdues for the global simulation parameter
variables (currentlyegmodenpatch patchareaifdailyps, ifdailydecompifbgestahifsme
ifstochestabifstochmortiffire, ifdisturb, distinterval estinterva) npft), initialisespftlist (the
one and only list of PFTs and their static paransei@ this run of the model). Normally all
of the above parameters, and possibly otherseakfrom the ins file (see above). Function
readins should be called to input settings from the ites fThe syntax for this call should be
similar to the following (note thaieadins returns false in the event of any error in thefiles
normally this should result in program termination)

xtring insfilename=argv[1];
if (Ireadins(insfilename,pftlist))
fail("\nUsage: %s <instruction-script-filename> | -help",argv[0]);

Argumentsargc andargv normally correspond to the command-line argumenported
from themain function (main module, usually main.cpp). Thetfessmmand line argument
(argv0]) is the name of the binary executable (e.gsguguess.exe); the secoady{{1])
should normally be the ins file name.

32

Note that the demonstration versionrofio also implements "-help” as an
alternative command-line argument, resulting inpatiof a brief description of the keywords
recognised in the ins file, instead of a model run.

bool getstand Stand&stand

Obtains latitude and soil static parameters fomdve stand (grid cell or locality) to simulate.
The function should returns false if no stands riert@mbe simulated, otherwise true.
Currently the following member variablessibndshould be initialised: membelet and
instypeof memberlimate the following members of membsoiltype awd0], awd1],
perc_baseperc_expthermdiff_Q thermdiff_15thermdiff_100The soil parameters can be
set indirectly based on an Ipj soil code (Sitchl€2000) by a call to functiosoilparameters

in the driver module (driver.cpp):

soilparameters(stand.soiltype,soilcode);

If the model is to be driven by quasi-daily valwéshe climate variables derived from
monthly means, this function may be the approppédee to perform the required
interpolations. The utility functiomterp_climate in driver.cpp may be called for this
purpose:

interp_climate(mtemp,mprec,msun,dtemp,dprec,dsum);

This assumes the following arrays of type doulde§] declared, presumably at file global
scope:

double mtemp[12] monthly average temperatures (°C)
double mprec[12] monthly precipitation sum (mm)
double msun[12] monthly average sunshine %
double dtemp[365] daily interpolated temperatuf®) (°
double dprec[365] daily interpolated rainfall (mm)
double dsun[365] daily interpolated sunshine %

bool getclimate(Stand&stand

Called by the framework each simulation day to wbtiimate data (including atmospheric
CO, and insolation) for this day. The function shosifiuld return false if the simulation is
complete for this stand, otherwise true. This wdkmally require querying thgearandday
member variables of the global class obg@ate the simulation time step:

if (date.day==0 && date.year==nyear) return false;
Il else
return true;

Currently the following member variables of ttienatemember ostandmust be initialised:
co2 temp precandinsol. If the model is to be driven by quasi-daily vau the climate
variables derived from monthly means, this daylsesawill presumably be extracted from
arrays containing the interpolated daily value® (gstand above):

stand.climate.temp=dtemp[date.day];
stand.climate.prec=dprec[date.day];
stand.climate.insol=dsun[date.day];

33

void outannual(Stand&stand Pftlist& pftlist)

Called by the framework at the end of the last ofagach simulation year to provide the
opportunity to output simulation results. This ftion does not have to provide any
information to the framework.

void termio()

Called after the simulation is complete (i.e. faling simulation of all stands) to allow
memory deallocation, closing of files or other ‘atep" functions.

34

Input/Output, Part 2:

Recommended input/output techniques for use in LPGUESS

The standard libraries of the C and C++ languagesde several "families" of functions and
classes for performing input from and output tedi(and the keyboard, screen etc). Users of
LPJ-GUESS with prior experience of C/C++ progranmgmmay have established preferences
as to coding input/output, and are in practice foeese whatever functions they wish.
However, there are arguments for adopting a starsldrset of techniques:

» LPJ model development and application is a collatian. Even "personalised”
versions of the model code are subject to viewsogying or application by other
developers. Few LPJ developers are programmehgifirst instance, and even fewer
have a background working with the C or C++ langaisagKeep it simple" is surely a
helpful principle.

* The functions adopted here, with one exceptiondafmed in the standard C runtime
library and so are supported by all C and C++ céengi This guarantees portability
of any code built using these functions. The furcteadfor, recommended here for
input of ASCII text data, is defined in the guiilrary, which is required to compile
LPJ-GUESS. The library itself is ANSI-compatibléhi3 function does not, therefore,
restrict portability of any code it is included in.

Input/output using streams

The functions described here (with the sole exoeptifreadfor) are defined in the header
file stdio.h and form part of the standard C rumtilibrary, implemented by all C and C++
compilers. These functions use special memory araéed streams to store data temporarily
before it is transferred to, or after it is reteedMrom, a data file on disk. The streams are
managed automatically by the library and are comsetly "transparent” to the calling
program.

Streams implemented by a calling program are ifietitoy a "handle”, which is a
variable of the type FILE* ("pointer to FILE"). Whever a stream is created for reading or
writing (usually, by opening a file with tHepen function), the stream handle must be stored
in a variable of type FILE* and "remembered" uthié stream is closed (either by termination
of the program or, preferably, by a call to funotfolose. The handle is required every time
data is sent to, or retrieved from, the stream. fdr&lle is also used when performing
operations on the "file pointer”, such as "rewirgdithe file.

A few streams are implemented automatically aedlay default, always open for
reading or writing. The most useful of these adinstwhich by default retrieves input from
the keyboard, and stdout, which sends output te¢heen.

35

Required header files

Any program using the functions described here nmettide the header files stdio.h and
gutil.h; i.e. the following #include directives mwppear at or near the top of each source
code file (note that, if both #include's are preéstrey should appear in the same order as
shown here):

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <gutil.h>
/I NB: the angle bracket <...> notation assumes th e path to
[l gutil.h is in the standard include path
Il (see compiler documentation)

The header files gutil.h, stdlib.h, string.h anddih are required only if functioradfor is
called by the program. In this case, the programtralso be linked to a binary form of the
gutil library (which has the filename gutil.lib gutil.a). Note that all the above #include's
appear in the default framework header file for {GRJESS (guess.h); therefore, they do not
also have to appear in the input/output modulaiscgocode file, so long as guess.h is
included as a header file (as it always should).

36

Opening a file for input or output

Use thefopen function to open a file for reading or writing. & file must exist if it is to be
opened for reading only. If opening a file for wrg, a new file is created, or the file is

overwritten

if it already exists. This functionuets a handle to the resultant input or output

stream, which should be stored in a variable o¢ tyf.E* by the calling program. If the
handle is null (has the value 0), this means thespecified file could not be opened.

Function synopsis:

FILE* fopen(const charfilename const charmode

Arguments:

filename

mode

a string identifying the file to open. The fullthaame should be given unless the
file is located in the "working directory" for tlealling program — usually the
directory in which the executable is stored. If filename is specified as a
character string literal, note that the backsldsdracter ("\") must be specified
by two consecutiveackslash characters (this is because the babkstasacter
has a special meaning in C/C++ string literals amsthgle backslash character is
never defined); for example, use "c:\\guess\\outxiiif not "c:\guess\output.txt”;
of course, this rule applies only to string litenaithin the source codef a
program.
the type of stream to create; various moaepassible; the most useful ones
are:
"r" or "rt" open stream for input (reading) of AS@xt (the file must exist)
"w" or "wt" open stream for output (writing) of ASIGext (a new file is
created, or the existing file is opened and itd@ois erased)
"a+" or "at+t" open stream for text output in appemolde — any output is added
to the end of the original file contents; a new fd created if the
specified one does not exist.

"rb" open stream for input of binary data (the fibeist exist)

"wb" open stream for output of binary data (a névi§ created, or the
existing file is opened and its contents erased)

"a+b" open stream for binary output in append m@ee "a+").

Note: argumentdilenameandmodeare of type const char* (the standard C string@)\ay
default; however, arguments of type xtring (thesslgype used for strings in LPJ-GUESS) can
also be specified (they are casted automaticalbh&o™).

Example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <gutil.h>

FILE *in,*out;
xtring logfile="c:\\guess\\guess.log";

/I Open text file "temp.bin" for input
in=fopen("temp.bin","rb");
if (fin) {
printf("Error: could not open temp.bin for input\n
exit(99);

/I Open log file with stored name for output
out=fopen(logfile,"wt");
if (fout) {
printf("Error: could not open %s for output\n”,(ch
exit(99);

ar*)logfile);

37

38

Input/output of binary data

Binary data can be efficiently written to a fileng thefwrite function, and retrieved using

the very similafread function. Note that binary data are transferredby-byte exactly as
stored in memory. Different compilers (e.g. Spagrsus Microsoft) and, more importantly,
different languages (e.g. C/C++ versus FORTRAN) msgy different ways of storing the
same information in memory. This applies partidylés numerical data types (integers and
floating-point numbers). Therefore, binary fileoald be avoided as a means of data transfer
between different systems and programs built udifigrent compilers.

Function synopses:

size_tfread(void* buffer, size_tsize size_tcount FILE* streamn)
size_tfwrite (const void*buffer, size_tsize size_tcount FILE* strean)

The returned value is the numbeiriteims(NB: notbyteg actually read or written; this should
normally be the same value as arguntenint but may be less if an error occurred or (for
fread) the end of the file was reached before all iterase input.

Arguments:

buffer A pointer to (i.e. the address in memory of) theaan memory to write to (for
fread) or transfer to file (fofwrite). The argument supplied is typically the
name of an array (equivalent to the address in mgofdhe first element of the
array) or the '&' operator followed by the nameofariable or class object.

size The number of bytes in memory taken up by eacheved transfer. Usually the
sizeofoperator is used to retrieve this value; for exignsipeof(int) returns
the number of bytes occupied by a single valugé int.

count The number of consecutive objects of the spectieeto transfer. This value is
usually set to 1 if transferring a simple variabteclass object, or, if transferring
an array, the number of elements in the array.

stream The stream to write to or from.

Note: the type size_t (size type) is defined in the leedite stdio.h; it can be treated as an
ordinary integral type (int, long etc).

Example:

int i,nitem=>5;

double value[]={ 12.3, 4.6, 9.2, 0.7, 3.6 };

double newvalue[5];

/I Open data.bin for output
FILE* out=fopen("data.bin","wb");

/I Write data to stream out
fwrite(&nitem,sizeof(int),1,out);
fwrite(value,sizeof(double),nitem,out);

/I Close data.bin
fclose(out);

/I Reopen data.bin for input
FILE* in=fopen("data.bin","rb");

/I Read data to array newvalue
fread(&nitem,sizeof(int),1,in);
fread(newvalue,sizeof(double),nitem,in);

/I Close data.bin
fclose(in);

39

40

Input of ASCII text

The standard C runtime library provides functiscanf for general-purpose input of data in
text format. Howeverfscanf has some limitations with regard to input of "fix®rmat" data
as commonly used in FORTRAN programs. In additiba,specifier codes used to describe
data formats fofscanf are idiosyncratic and will take some time for paogmers
accustomed to FORTRAN format strings to become tsetiherefore, for input of ASCII
text data, a function from the gutil library (gutl or gutil.a) is recommended in place of the
standard C function. This functioreadfor, employs format strings very similar to those used
in FORTRAN. The format string argumentrefadfor is of type xtring (also defined within
the gutil library), and strings input usingadfor are also converted to xtring objects.
Functionreadfor is available by default in the input/output modafd.PJ-GUESS
(the gutil library is a required component for blinlg LPJ-GUESS). Other programs using
readfor must be linked to gutil.lib/gutil.a, and includestheader file gutil.h (see "Required
header files", above).

Function synopsis:

bool readfor(FILE*& strm, xtringformat, ...)

Reads in ASCII text data from input streatrm, according to a FORTRAN-style format
specification given in the strirfgrmat. Addresses of the variables to be assigned tastesl)
in order of assignment, in the ellipsis (...) argunlist of the function. By default, any
characters remaining on the current line are dilghwhen the statement terminates (this
behaviour can be overridden by a $ specifier infoheat string — see below). The function
returns true if all specified values could be readnd assigned, or false if an end-of-file
condition prevented some values from being reahahassigned.

Example:

The following code opens for reading a text fillezh "climate.txt", reads in two values of
type double, one integer, and 12 further valudypé¢ double, and assigns these values,
respectively, to variables lon, lat, elev, and1Beslements of array mdata. Note that the
arguments following the format string axddresse®sf the variables to be assigned to — use
the '&' prefix for simple variables; omit the '&'dpecifying an array name (a pointer).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <gutil.h>

FILE* in;

double lon,lat;

int elev;

double mdata[12];

in=fopen("climate.txt","rt");
if (Ireadfor(in,"f6.1,f5.1,i4,12f5.1",&lon,&lat,&el ev,mdata))
printf("Warning: not all values could be read in\ n");

41

Format specifiers

A subset of the format specifiers defined for injputhe FORTRAN-77 language are
supported by function readfor. Note that theresamae differences in the way these are
implemented compared to FORTRAN. Specifier fielushe format string are normally
separated by commas. Each instance of an F, Ispreagifier is assumed to correspond to one
argument in the ellipsis argument list. Specifigrtax is case-insensitive and spaces and tabs
in the format string are ignored.

Important: a value (other than 1) for(number of items), if specified as part of an Br A
specification, assumes the values read are todignasl to consecutive elements of an array,
whose starting address is given bgirggleargument in the argument list. Do not use this
feature to assign multiple values with the sametimprmat to multiple consective arguments.

Floating point specifiemFw.dEe

Reads one or more floating point numbers, assigeaudp value to a variable of type double.

n the number of items to read innifis not specified, one value is assumed. See
cautionary note above.

w the number of characters to read in for each itergt specified, characters are read
up to the next space, tab, end-of-line, or the mestance on the current line of a
separator character appearing immediately aftespleifier in the format string (see
below).

d the number of digits in the fractional part of thember; if a decimal point is
encountered, this overrides the specified value isfomitted and no decimal point is
encountered, the input string is interpreted ashalevnumber.

e the number of digits in the exponent part of thenber; if the character 'E' or 'e' is
encountered, this overrides the specified valueidfomitted, the exponent 0 (i.e.,’10
=1) isassumed.

Examples:

Input stream1234 5.67

format specification stringsread values assigned
F "1234" 1234.0
F3 "123" 123.0
F3.1 "123" 12.3
F4.2E1 "1234" 1.23E+04
2F4.2 "1234", " 5.6" 12.34,5.6

42

Integer specifiernlw

Reads one or more integers, assigning each valmeaodable of type int.

n the number of items to read in;nfis not specified, one value is assumed. See
cautionary note above.

w the number of characters to read in for each itergt specified, characters are read
up to the next space, tab, end-of-line, or the mestance on the current line of a
separator character appearing immediately aftespleifier in the format strin (see
below).

Examples:

Input stream123 4567

format specification stringsread values assigned
I 123" 123
12 "12" 12
214 "123 ", "4567" 123, 4567

Character string specifienAw

Reads one or more character strings, assigningteackiariable of type xtring.

n the number of items to read innifis not specified, one value is assumed. If reading
multiple strings, a widthw) specification must be included (otherwise the oéshe
current line is read in and assigned to the filshg variable; subsequent variables are
assigned null strings). See cautionary note above.

w the number of characters to read for each itemotifspecified, characters are read up
to the next whitespace character, comma, or theinstance of a separator character
appearing immediately after the specifier in therfat string (see below).

The read to end-of-line specifier # may be use@&adl to the end of the current line (see
below).

Examples:

Input streamBERT HIGGINS

format specification strings read and assigned
A 'BERT"
A2 "BE"
2A6 "BERT H", "IGGINS"
At "BERT HIGGINS”

43

Position specifiernX

Advances one or more characters on the input stream

n The number of characters to read and discardisfomitted, a single character is read
in and discarded.

End-of-line specifier/

Advances to the end of the current line on thetigtneam. Input continues from the start of
the next line.

Suppress line feed specifiér

If given as the last significant character in tharfat string, suppresses reading and discarding
of the remainder of the current line on the inptgam.

Read to end-of-line specifiet

If specified after a character string specifiegd®to the end of the current line. Use to read in
the rest of the current line as a single charasttarg, including white space characters or
commas which are otherwise interpreted as separhtoacters.

Separator character specifier

Any character other than a space, tab or commac#maot be interpreted as part of one of
the specifiers above, is interpreted as a sepathtoacter, and causes input up to and
including the first instance of the specified separ character on the current line. If given
immediately following a variable-width F, | or Aagfication, input continues, for each item,
until an instance of the specified separator chiaras encountered, or the end of the current
line is reached (otherwise input continues unsipace, tab or the end of the line is reached).
If the separator character follows a fixed-widtH Br A specification, or forms a separate
specification field, the characters read are ddsar

A comma is interpreted as aptional separator character; a variable-width F or |
specification followed by a comma results in inpftitext up to the next space, tab, end-of-
line or commayvhichever comes firsa variable-width A specification followed by ansma
results in input up to the next comma or end-o&;lwhichever comes first.

Examples:

Input stream123; Hello World!; 3.142

format specification stringsread values assigned
A F 123", " Hello World!", "3.142" | 123, " HellWorld!", 3.142
F2.1;;12,A "12", " 3", ".142" 1.2, 3, ".142"

44

Input from the keyboard

If input is required from the keyboard instead att@am attached to a file, functioeadfor
can be used specifying stdin (one of the defardasts defined in stdio.h, and normally
associated with the terminal keyboard) asstine argument. Due to portability
considerations, however, keyboard input shouldvoédad in LPJ-GUESS (run-time options
may be set via custom specifiers in the instrucsionpt [.ins] file

45

Output of ASCII text

Formatted output of text is achieved using thentrifamily of functions. LPJ-GUESS
supplies its own member of this familyprintf , which sends output to the screen log (if
enabled) and log file (if enabled). In genedgrintf should be used insteadmintf for

"log" type output from LPJ-GUESS, including outpaithe screen. This improves portability
(for example, between command-line and Windowslsimgllementations of LPJ-GUESS)
and allows screen output to be disabled if, fomepia, the model is to be set up to run in
batch mode. LPJ-GUESS provides functiaih to send text output (usually some form of
error message) to the screen log and log file, émehthe simulation.

Function synopsis:

void dprintf (const charformat, ...)

Intended for writing ASCII text data to the screerscreen log window, and/or a log file (by
default, guess.log). The function may be calledhfenywhere within the code of LPJ-
GUESS. The function is declared in the frameworkdee file (usually guess.h), and defined
in the "main” module (usually main.cpp). The defadstination for the output text can be
changed by simple modification of the function defon in main.cpp. In other respects, the
function behaves exactly like functidprintf , which is described below.

Function synopsis:

void fail (const charformat, ...)

Writes ASCII text data to the screen or screerwioglow, and/or a log file (by default,
guess.log), then terminates execution of the madielnded to allow a final error message or
similar to be output before aborting the model datian, for example in the event of an
abnormal condition suggesting that an error haaroed. The function may be called from
anywhere within the code of LPJ-GUESS. The funcisotieclared in the framework header
file (usually guess.h), and defined in the "mairddule (usually main.cpp). The function is
identical todprintf in its handling of output.

For output to files, use tHprintf function. A simplified description of functidiprintf
follows; a complete synopsis of the function isdr&y the scope of this guide (see any C
language reference for a more detailed descrigtighis function).

Function synopsis:

int fprintf (FILE* streamconst charformat, ...)

Writes ASCII text data to output streatneam according to the format specifications and
other text given in the strifigrmat Arguments to be output are listed in the elligsi$
argument list of the function. A format specificatiis required for each argument in the
ellipsis argument list. The arguments must appe#re same order as the format
specifications iformat The returned value is the number of charactetsubu

46

The format string

The format string may consist of any combinatiomfinary text and format specifications.
Ordinary text is output exactly as it appears mfibrmat string, while each format
specification is converted to a representatiornefdata value contained in (or pointed to) by
its corresponding argument in the ellipsis arguntishtFormat specifications may be freely
interspersed with ordinary text.

Format specifications

Each format specification has the form: fvpt

wheref, w, p andt are different fields of the specification, knowsithe flags field, width
field, precision field and type field, respectivefll of the fields are optional (may be

omitted), except the type field.

The flags fieldf

The flags field, if given, may consist of any comdtion of the following single character
specifiers:

- left align the output text within field specifidy w (default: right align)

+ if the value to output is of a signed numerigale, prefix the output text by a sign (+
or -) (default: no sign output)
0 if the value to output is of a floating point gpad the output value on the left by

zeroes, up to the width specified Wwydefault: padding by spaces)

The width field w

If given, this field must consist of a positiveager, representing tmeinimumnumber of
characters to output. If the output value requinese than the number of characters specified
by w (depending on the precision field, the flags fiatdl the value of the argument to be
output) the width specification is ignored. If thember of characters to outputessthanw,

the output is padded on the left be spaces, bytefdis default behaviour can be modified
by a 0 or — specifier in the flags field (see aljove

The precision fieldp

This field always consists of a decimal point ¢l)Jdwed by a positive integer, representing
eitherthe number of digits to show after the decimal p@on floating point numbers output
using the e, E or f type specifier (see belaw)the maximum number of significant digits to
print for floating point numbers output using thergG type specifier (see below). Default
precision is assumed if the precision field is oeait Precision specifications can also be
made for output of integer and string types, bi# filnctionality is not explained here.

The type fieldt

The type field specifies the data type of the gponding argument in the ellipsis argument
list, and for some types, also controls the appearaf the output text. A subset of the

47

possible type specifiers are given below. Note tyja¢ specifiers are case sensitive (e.g. 'g' is
interpreted differently to 'G").

d, i

f

e E

9, G

single character; supplied argument may be & typ long or char

signed integer; supplied argument may be pé tynt, long or char; unsigned integral
types are converted to signed

signed floating point value, output in simple oheal format (e.g. -3.142); supplied
argument may be of type float or doulilgggral types (int, long etc) must be
explicitly cast to float or double

signed floating point value, output in expdrfermat (e.g. -1.23E+45); the symbol 'E'
in the output value may be in upper or lower cdsepending on the case of the
specifier; supplied argument may be of type flaad@uble;integral types must be
explicitly cast to float or double

signed floating point value, output in eitsenple decimal or exponent format,
depending on the value of the supplied argumeatsyimbol 'E', if included in the
output value, may be in upper or lower case, deipgrmh the case of the specifier;
supplied argument may be of type float or doulriggral types must be explicitly
cast to float or double.

character string; supplied argument must be & génter to the string to output;
Important: strings of type xtring (or other non-pointer reg@etations) must be
explicitly cast to char* (see example below)

Example:

The following code:

xtring name="Bert Higgins";
int age=24;
double height=1.8;

FILE* out=fopen("logfile.txt","w");

fprintf(out, "Name: %s\nAge:%4d\nHeight:%5.2f\n",

(char*)name, age, height);

results in output of the following text to the fllgfile.txt:

Name: Bert Higgins
Age: 24
Height: 1.80

48

Closing files

Streams are closed using fesefunction. You should make it a habit to closefisis
explicitly, even though streams are normally clogetbmatically when a program terminates.

Function synopsis:

int fclosgFILE* streamn)

The function returns null (0) except in the eveind error (e.g. if the specified FILE* is not
a valid handle to an open stream).

Other useful input/output functions

Function synopsis:

int feof(FILE* strean)

This function returns null (0) unless the file peinon the specified stream has passed the last
data byte in the file, i.e. end-of-file has beeacteed. Functiofeof is often useful when
reading a file from start to finish, as in the éolling example.

Example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <gutil.h>

double lon,lat,temp[12];

FILE* in=fopen("temp.txt","r");
FILE* out=fopen("temp.bin","wb");

while (feof(in)) {
if (benutil::readfor(in,"f7.3,f6.2,12f6.1",&lon,&I at,temp)) {
fwrite(&lon,sizeof(int),1,out);
fwrite(&lat,sizeof(int),1,out);
fwrite(temp,sizeof(double),12,out);

}

fclose(in);
fclose(out);

49

Function synopsis:

void rewind(FILE* streamn)

Repositions the file pointer on the specified strda the start of the file.

Example
bool findcell(double lon,double lat,FILE* in,double temp[12]) {
/l Finds the record corresponding to grid cell (lo n,lat) on the
I/ specified stream and reads temperature data for this grid cell to

/[array temp.
/I Returns false if the record could not be found

double rlon,rlat;
bool rewound=false;

while (!feof(in)) {
if (benutil::readfor(in,"f7.3,f6.2,12f6.1",&rlon, &rlat,temp)) {
if (lon==lon && rlat==lat) return true;

else if (frewound) { // rewind if end-of-file rea ched
rewind(in);
rewound=true;
}
}

return false;

50

Graphical output

More recent versions of LPJ-GUESS define a numbglabal functions for graphical
output. These are functional only if LPJ-GUESSustlas a dynamic-link library (DLL)
under Windows and run from the LPJ-GUESS windovedlsim other implementations the
graphical functions may still be called but willtrcause anything to happen.

Function synopsis:

void plot(xtring window xtring series doublex, doubley)

Opens a new graphics window calleohdowif it is not already open; creates a new series
(curve) callecseriesif it does not already exist; adds a data poinihwhe coordinatex(y).
Typically x will correspond to the simulation yeaate.year) andy to the value of some
state variable.

Example:

The following code, called every 10th simulatioragecauses display of a chart with a curve
corresponding to each of the soil organic matt@gpm a certain patch:

if (!(date.year%10)) {

plot("SoilC","Fast",date.year,patch.soil.cpool_fas t);
plot("SoilC","Slow",date.year,patch.soil.cpool_slo w);

Function synopsis:

void resetwindow(xtring window)

Clears all series and data from windesmdowbut does not close the window.

Function synopsis:

void clear_all_graphg)

Clears all series and data from all open graphioslows, and closes the windows.

51

Custom library reference:

Character string manipulation with class xtring

Most character strings in LPJ-GUESS are storedgsts of class xtring. The definition of
class xtring and its member functions is includethe gutil library (gutil.lib; Unix version:
gutil.a) which is a required to build LPJ-GUESS.

Construction and initialisation

The following forms of constructor function are plipd for constructing and initialising new
xtring objects:

xtring ()

xtring (char* str)
xtring (charch)
xtring (int initsize

If a char* or char argument is supplied, it proddiee initial string text; otherwise an empty
string (") is assigned. If the integer argumignitisizeis given, the empty string is assigned to
the object, but at leastitsizet1 bytes of memory are set aside for the objetritsgsbuffer

(this implies that a string up toitsizecharacters in length can subsequently be assigned
the object without reallocation of memory for thigrgy buffer).

Declare new xstring objects using one of the follgyforms:

xtring s; // equivalent to xtring s=""
xtring s="initial text";

xtring s='c’;

xtring s(INITSIZE);

You can also cast a string or character literartxtring the usual way:

(xtring)"Cast to a xtring"
(xtring)'c’

In general, xtring objects can be used in placgaridard C char* strings without explicit
casting, e.g.

char copy[100];
xtring original="text";
strcpy(copy,original);

However, xtring objects must be explicitly castedhar* when specified as arguments in
calls to functions with an ellipsis argument, e.g.

xtring name="Ben";
printf("My name is: %s",(char*)name);

Casting to char* is useful also if you (unwiselgPpose to write directly to the internal string
buffer of the xtring object:

52

xtring name(100);
char* pbuffer=(char*)name;
strepy(pbuffer,"Ben");

Note, however, that some of the member functiondraorig can cause the size and memory
position of the internal buffer to change. You meissure that the buffer is at leaster1

bytes (characters) in length if writing a strisigebytes in length to it. The specified
minimum size of the buffer is guaranteed if thengrobject is initialised using the xtring(int)
constructor (see above) or following a call to menflanction reserve (see below).

Other public member functions

unsigned londen()

Returns the length of the current string in chanac{not including a trailing null character);
e.g.

xtring s="18 characters long";
int result=s.len();

xtring upper()

Returns a new xtring equivalent to the current t with lower-case alphabetics 'a’-'z'
converted to upper case; e.g.

xtring s="the quick brown fox";
xtring t=s.upper(); // t set to "THE QUICK BROWN FO X"

xtring lower()

Returns a new xtring equivalent to the current @ with upper-case alphabetics 'A'-'Z'
converted to lower case; e.g.

xtring s="THE QUICK BROWN FOX";
xtring t=s.lower(); // t set to "the quick brown fo X"

xtring printable ()

Returns a new xtring equivalent to the current to with non-printable characters (ASCII
code 0-31) removed.

xtring left(unsigned longn)

Returns a new xtring consisting of the leftmosharacters of the current xtring. An empty
string (") is returned ih < O; if n > length of the current xtring, an identical cagythe
current xtring is returned; e.g.

xtring s="Ben Smith";
xtring t=s.left(3); // t set to "Ben"

xtring mid (unsigned long, unsigned long)
xtring mid (unsigned long)

53

If both arguments are given, returns a new xtrioigsesting of up ta characters, starting at
character numbex (zero-based) of the current xtringsk 0, the new string starts at
character 0 of the current xtring;sf length of the current xtring, an empty stringaturned.
If argumentn is omitted, returns a new xtring consisting of tightmost portion of the
current xtring, starting at character numidf s < 0 an identical copy of the current xtring is
returned; e.qg.

xtring s="Wolfgang Amadeus Mozart";
xtring t=s.mid(9); // t set to "Amadeus Mozart"
xtring g=s.mid(9,7); // q set to "Amadeus"

xtring right (unsigned longn)

Returns a new xtring consisting of the rightmosharacters of the current xtring. An empty
string is returned ih < O; if n > length of the current xtring, an identical capyeturned; e.g.

xtring s="Ben Smith";
xtring t=s.right(5); // t set to "Smith"

longfind (char*s)
long find (charc)

Returns the position (zero based) of the specdietacter string or character if it occurs as a
substring of the current xtring. If a char* argurhlemger than one character is given, the
returned value is the position of the first chagadf the substring, if it is found. If there are
several occurences, the position of the leftmosti@nce is returned. Returns -1 if the string
or character is not found; e.g.

xtring s="abbcd";

int n=s.find('b"); / nsetto 1
int m=s.find("bc"); // m set to 2
int g=s.find("de"); // q set to -1

long findoneof(char* s)

Returns the position in this xtring of the firs#ffmost) occurrence any character forming part
of the string pointed to by Returns -1 if there are no occurrences; e.g.

xtring s="abbcd";
int n=s.findoneof("edc"); // n set to 3

long findnotoneof(char*s)

Returns the position in this xtring of the firs¢ffmost) charactarot forming part of the
string pointed to bg. Returns -1 if no such character is found; e.g.

xtring s="abbcd";
int n=s.findnotoneof("abc"); // n set to 4

54

doublenum()

Returns the numerical value of the current xtrihd,is a valid representation of a double
precision floating point number in C++. Call furastiisnum() to test whether the returned
value is meaningful; e.g.

xtring pi="3.142";
double v=pi.num(); // v set to 3.142

charisnum()

Returns 1 if the current xtring is a valid repraaéion of a double precision floating point
number in C++, O otherwise; e.g.

xtring good="3.142";

xtring bad="three point one four two";
double val;

if (good.isnum()) val=good.num();
else val=bad.num();

void printf (char*fmt,...)

A printf-style function for writing formatted data this xtring object. Equivalent to function
sprintf in the standard C stream input/output lipr@tdio.h). See any standard C/C++
reference manual for full documentation of prirtifls output functions; e.g.

xtring out;
char* name[]="pi";
double dval=3.142;

int ndec=3;
out.printf("%s has the value %g to %d decimal place s",name,dval,ndec);
/I out set to "pi has the value 3.142 to 3 decimal places"

void reservgunsigned longn)

Expands or contracts the memory allocation to tireeat xtring object to accomodate a

string at leash characters in length (not including the trailinglibyte). The currently stored
string may be copied to a new location in memonyidmot deleted. This function may be
useful if you intend to write directly to the inted string buffer, whose address is returned by
casting the xtring object to char*; e.qg.

xtring s;
s.reserve(100);
strcpy(s,"A string up to 100 characters long");

In general, however, there should be no reasorrite directly to the internal string buffer of
an xtring object; use the assignment (=) operatee pelow) to assign a new value to the
object.

55

Overloaded operators

The following operators are defined for xtring atige

Assignment: =, +=
Concatenation: +, +=
Comparison: ==, I=, <, >, <=, >=
Array subscript: []

Operator functionality is described here mainlycbyge examples. The examples below
assume the following data types for variables:

xtring x1,x2,x3;
char* s;

char c;
unsigned long n;

Assignment:

x1="Ben";
x1+=" Smith"; // x1 set to "Ben Smith"

Concatenation(appends a char* string, xtring or character eoghd of an xtring string):

x1="Wolfgang ";
x2=" Mozart";
c='A’;
x3=x1+c;
x3+=x2+" (composer)";
/I x3 set to "Wolfgang A Mozart (composer)"

Concatenation of, for example, two char* stringsaatring to the end of a char* string, is
possible by casting one of the operands to angtrin

x1=(xtring)"Wolfgang "+"Mozart";
x1=(xtring)"Wolfgang"+x2;

Comparison (== and !'= compare string identity; <, >, <=, >gntpare "alphabetic" rank):
x1==x2 && x21=x3 || x1<s || Xx1>c || x2<=x3 || x3>=X 1

Note that the left hand operand must be a xtringésted to xtring)

Array subscript (X[n] retrieves a reference to thth character [zero-based] within xtrirg

c=x1[n];
x1[n]=c;

The size of the internal string buffer is expandetcessary to ensure that the specified
subscript is valid (points to a character positiothin the internal string buffer). However,
the string itself is not expanded (i.e. the positd the trailing null byte, signifying the end of
the string, is not changed.

56

Appendix: Keywords recognised in the instruction sgpt

The following is a list of keywords and their meags recognised in instruction scripts (ins
files) by the CRU input/output module of LPJ-GUE&Snearly all cases, the keyword
corresponds to the name of the variable in the mmabke to which the associated value is
assigned. Custom "param” settings are not includduis list.

General (global) settings

May appear anywhere in the ins file, except witlgroup", "pft" or "param" blocks.

title
nyear_spinup
vegmode

ifdailynpp
ifdailydecomp
ifbgestab
ifsme
ifstochmort
ifstochestab
estinterval
distinterval
iffire
ifdisturb
ifcalcsla
ifcdebt
npatch
patcharea
outputdirectory
file_cmass
file_anpp
file_lai
file_cflux
file_dens
file_cpool
file_runoff
file_firert
file_mnpp
file_mlai
file_mgpp
file_mra
file_maet
file_mpet
file_mevap
file_mrunoff
file_mintercep
file_mrh
file_mnee

file_mwcont_upper

Title for run
Number of simulation years to spiraup f
Vegetation mode ("INDIVIDUAL", "COHORT",
"POPULATION")
Whether photosynthesis calculated dély monthly)
Whether soil decomposition calculadedy (alt monthly)
Whether background establishment engbléd
Whether spatial mass effect enabled for éshabent (0,1)
Whether mortality stochastic (0,1)
Whether establishment stochastic (0,1)
Interval for establishment of new catdyears)
Generic patch-destroying disturbamterival (years)
Whether fire enabled (0,1)
Whether generic patch-destroying distadsenabled (0,1)
Whether SLA calculated from leaf longgvit
Whether to allow C storage
Number of patches simulated
Patch area (m2)
Directory for the output files
C biomass output file
Annual NPP output file
LAI output file
C fluxes output file
Tree density output file
Soil C output file
Runoff output file
Fire retrun time output file
Monthly NPP output file
Monthly LAI output file
Monthly GPP-LeafResp output file
Monthly autotrophic respiration outputfil
Monthly AET output file
Monthly PET output file
Monthly Evap output file
Monthly runoff output file
Monthly intercep output file
Monthly heterotrphic respiration outpuefi
Monthly NEE output file
Monthly wcont_upper output file

57

file_mwcont_lower
ifsmoothgreffmort

Monthly wcont_lower output file

Whether to vary mort_greff smdgtivith growth efficiency
(0,1)
ifdroughtlimitedestab Whether establishment drodighited (0,1)
ifrainonwetdaysonly Whether it rains on wet dayk/df), or a little every day (0);
ifspeciesspecificwateruptake Whether or not thespecies specific soil water uptake (0,1)

searchradius
pft

PFT settings

If specified, CRU data will be seaddioein a circle
Header for block defining PFT

Must appear within a named "pft" block, or "grougddck. In the latter case, the group name
should appear as a setting in the associatedqufk(d).

include Include PFT in analysis

lifeform Lifeform ("TREE" or "GRASS")

phenology Phenology ("EVERGREEN", "SUMMERGREEN",
"RAINGREEN" or "ANY")

phengdd5ramp GDD on 5 deg C base to attain fulldeger

wscal_min Water stress threshold for leaf absaisgi@ngreen PFTs)

pathway Biochemical pathway ("C3" or "C4")

pstemp_min Approximate low temp limit for photodyesis (deg C)

pstemp_low Approx lower range of temp optimum fbofwsynthesis (deg
C)

pstemp_high Approx higher range of temp optimumplootosynthesis (deg

pstemp_max

C)
Maximum temperature limit for photosgsth (deg C)

lambda_max Non-water-stressed ratio of interceallidaambient CO2 pp
rootdist Fraction of roots in each solil layer ¢fivalue=upper layer)
gmin Canopy conductance not assoc with photosyistiiesn/s)
emax Maximum evapotranspiration rate (mm/day)

respcoeff Respiration coefficient (0-1)

cton_leaf Leaf C:N mass ratio

cton_root Fine root C:N mass ratio

cton_sap Sapwood C:N mass ratio

reprfrac Fraction of NPP allocated to reproduction

turnover_leaf
turnover_root
turnover_sap

Leaf turnover (fraction/year)
Fine root turnover (fraction/year)
Sapwood turnover (fraction/year)

wooddens Sapwood and heartwood density (kgC/m3)
crownarea_max Maximum tree crown area (m2)

k_alloml Constant in allometry equations

k_allom2 Constant in allometry equations

k_allom3 Constant in allometry equations

k_rp Constant in allometry equations

k_latosa Tree leaf to sapwood xs area ratio

sla Specific leaf area (m2/kgC)

[tor _max Non-water-stressed leaf:fine root mags rat
litterme Litter moisture flammability threshold dstion of AWC)
fireresist Fire resistance (0-1)

tcmin_surv
tcmin_est

tcmax_est

twmin_est
twminusc
gdd5min_est
k_chilla
k_chillb
k_chillk
parff_min
alphar
est_max
kest_repr
kest_bg

kest _pres
longevity
greff_min
leaflong

intc
drought_tolerance

58

Min 20-year coldest month mean tempstowival (deg C)
Min 20-year coldest month mean temp $taldishment (deg
C)

Max 20-year coldest month mean tempshabéshment (deg
C)

Min warmest month mean temp for estabiesfit (deg C)
Stupid larch parameter

Min GDD on 5 deg C base for establistime
Constant in equation for budburst chillinge requirement
Coefficient in equation for budburst chillj time requirement
Exponent in equation for budburst chillinge requirement
Min forest floor PAR for grass growthirestab (J/m2/day)
Shape parameter for recruitment-juv groath relationship
Max sapling establishment rate (indiv/mayye

Constant in equation for tree estab rate

Constant in equation for tree estab rate

Constant in equation for tree estab rate
Expected longevity under lifetime nonestsed conditions (yr)
Threshold for growth suppression moryalkgC/m2 leaf/yr)
Leaf longevity (years)
Interception coefficient

Drought tolerance level (0 = very = not at all) (unitless)

59

References

Bachelet, D, Neilson, R.P., Hickler, T., DrapekJR.Lenihan, J.M., Sykes, M.T., Smith, B., Sitch, &
Thonicke, K. 2003. Simulating past and future dyiwasnof natural ecosystems in the United States.
Global Biogeochemical Cyclds’: 1045-1065.

Badeck, F.-W., Lischke, H., Bugmann, H., Hickler, Fiénninger, K., Lasch, P., Lexer, M.J., Mouillgt,
Schaber, J. & Smith, B. 2001. Tree species conipasit European pristine forests. Comparison of
stand data to model predictiofimatic Changes1: 307-347.

Cramer, W., Bondeau, A., Woodward, F.l., Prenti¢g,, Betts, R.A., Brovkin, V., Cox, P.M., Fish&f,, Foley,
J.A., Friend, A.D., Kucharik, C., Lomas, M.R., Rarkatty, N., Sitch, S., Smith, B., White, A. &
Young-Molling, C. (2001) Global response of terredtecosystem structure and function to G@d
climate change: results from six dynamic globaletajon modelsGlobal Change Biology: 357-373.

Cramer, W., Bondeau, A., Schaphoff, S., Lucht, 8¥nith, B. & Sitch, S. 2004. Tropical forests and ghobal
carbon cycle: Impacts of atmospheric £€imate change and rate of deforestatfimlosophical
Transactions of the Royal Society of London, S&i&§&9: 331-343.

Foley, J.A. 1995. An equilibrium model of the testréal carbon budgeT.ellus47B: 310-319.

Fulton, M.R. 1991. Adult recruitment rate as a tiort of juvenile growth in size-structured plantpodations.
Oikos61: 102-105.

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht®8itch, S. 2004. Terrestrial vegetation and whatdance —
hydrological evaluation of a dynamic global vegetaimodel.Journal of Hydrology286: 249-270.

Haxeltine A. & Prentice I.C. 1996. BIOMES3: an eduilum terrestrial biosphere model based on
ecophysiological constraints, resource availabibtyd competition among plant functional types.
Global Biogeochemical Cycld®): 693-709.

Hickler, T., Smith, B., Sykes, M.T., Davis, M.B.u@ta, S. & Walker, K. 2004. Using a generalizedetation
model to simulate vegetation dynamics in the wes@reat Lakes region, USA, under alternative
disturbance regimeg&cology85: 519-530.

Lloyd, J. & Taylor J.A. 1994. On the temperatur@aedence of soil respiratioRunctional Ecology8: 315-323.

Lucht, W., Prentice, I.C., Myneni, R.B., Sitch, Briedlingstein, P., Cramer, W., Bousquet, P., Bwam, W. &
Smith, B. 2002. Climatic control of the high-latiieivegetation greening trend and Pinatubo effect.
Science296: 1687-1689.

Prentice, I.C., Sykes, M.T. & Cramer W. 1993. Aslation model for the transient effects of climak@ange on
forest landscapeg&cological Modellings5: 51-70.

Reich, P.B., Walters M.B. & Ellsworth D.S. 1997 oFRr tropics to tundra: global convergence in plant
functioning.Proceedings of the National Academy of Sciences ¥SA3730-13734.

Sitch, S., Prentice I.C., Smith, B. & Other LPJ €orium Members, 2000. LPJ — a coupled model oétadgpn
dynamics and the terrestrial carbon cythe.Sitch, SThe Role of Vegetation Dynamics in the Control
of Atmospheric C@Content Ph.D. Thesis, Lund University, Lund, Sweden.

Sitch, S., Smith, B., Prentice, I.C., Arneth, Agri8leau, A., Cramer, W., Kaplan, J., Levis, S., tugh, Sykes,
M., Thonicke, K. & Venevsky, S. 2003. Evaluationemosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ Dynamic Gloagetation ModelGlobal Change Biolog9:
161-185.

Smith, B., Prentice, I.C. & Sykes, M. 2001. Repreation of vegetation dynamics in the modellingesfestrial
ecosystems: comparing two contrasting approachiswkEuropean climate spadelobal Ecology and
BiogeographylO: 621-637.

Sykes, M.T., Prentice I.C. & Cramer W. 1996. A bilmatic model for the potential distributions ofrtio
European tree species under present and futurateléjournal of Biogeographg3: 209-233.

Sykes, M.T., Prentice, I.C., Smith, B., Cramer,&Wenevsky, S. 2001. An Introduction to the Europea
Terrestrial Ecosystem Modelling Activitalobal Ecology and Biogeography): 581-594.

Thonicke, K., Venevsky, S., Sitch, S. & Cramer, 2801. The role of fire disturbance for global vegien
dynamics: coupling fire into a Dynamic Global Veafein Model.Global Ecology and Biogeography
10: 661-677.

Websites

www.pik-potsdam.de/lpj
www.nateko.lu.se/lpj-guess

